NAVAL POSTGRADUATE SCHOOL
Monterey, California

19970107 133

THESIS

SOFTWARE SYSTEM REQUIREMENTS FOR THE
ARMY TACTICAL MISSILE SYSTEM (ATACMS)
END-TO-END SYSTEM USING THE COMPUTER
AIDED PROTOTYPING SYSTEM(CAPS) MULTI-

FILE APPROACH

by

David Stuart Angrisani
George Steven Whitbeck

September 1996

Thesis Advisors: Luqi
' Valdis Berzins
Man-Tak Shing

Approved for public release; distribution is unlimited

DTIC QUALITY (NSPECTED 1

kN

" THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
COLOR PAGES WHICH DO NOT
REPRODUCE LEGIBLY ON BLACK

AND WHITE MICROFICH

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1996 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Software System Requirements for the Army Tactical Missile System (ATACMS)
End-to-End System Using the Computer Aided Prototype System (CAPS) Multi-
File Approach

6. AUTHOR(S)
David Stuart Angrisani, George Steven Whitbeck

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
Naval Postgraduate School
Monterey, CA 93943-5000
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the authors and do not reflect the official policy or position of the
Department of Defense or the U.S. Government,

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (maximum 200 words)

The Department of Defense (DOD) is secking software system requirements for the Army Tactical Missile
System (ATACMS) End-to-End System, which comprises both ATACMS and all sensors, links, and command centers
which enable integration across system and service boundaries. The complexity, multiple interfaces, and joint nature of
planned ATACMS operations demands accurate specification of software system requirements. DOD also desires
automated tools capable of developing rapid prototypes to assist in system definition and reduce system risk.

The goals of this thesis are to provide a rigorous model which can be utilized to validate current specifications,
and, to demonstrate CAPS on a large scale project. Accomplishment of these two would provide a needed corroboration
of the ATACMS specification, as well as move CAPS out of the purely academic environment.

The result of this thesis is mixed. Due to a paucity of data from which to derive the requirements, the model is
generic in nature and is in need of significant customer evaluation, which is not forthcoming. However, CAPS
demonstrated its fundamental concept within the bounds of the project, with refinements in code generation, interface, and
graphics either incorporated or identified. CAPS is ready for use on an actual project by an experience team of systems
analysts.

14. SUBJECT TERMS 15. NUMBER OF PAGES

CAPS, PSDL, Systems Analysis, Software Requirements, Rapid Prototyping, TAE Multi-file 171
) 16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF REPORT | CLASSIFICATION OF THIS PAGE | CLASSIFICATION OF ABSTRACT
ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

Approved for public release; distribution is unlimited

SOFTWARE SYSTEM REQUIREMENTS FOR THE
ARMY TACTICAL MISSILE SYSTEM (ATACMS)
END-TO-END SYSTEM USING THE
COMPUTER AIDED PROTOTYPING SYSTEM (CAPS)
MULTI-FILE APPROACH

David Stuart Angrisani
Lieutenant Commander, United States Navy
BS Nathaniel Hawthorne College, 1982

George Steven Whitbeck
Major, United States Marine Corps
BS United States Naval Academy, 1983

Submitted in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE IN COMPUTER SCIENCE
from the
NAVAL POSTGRADUATE SCHOOL

September 1996

Ll e

David S. Angns

-~

George S. Whitbeck

Approved by:

L\(qi, Thesis Advisor

- — C
Lotl; oo s
Valdis Berzﬁs, Thesis Advisor

]

/ Man-Tak Shing, Thesis Advisor

Ted Lewis, Chairman, Department of Computer Science

iii

iv

ABSTRACT

The Department of Defense (DOD) is seeking software system requirements for
the Army Tactical Missile System (ATACMS) End-to-End System, which comprises both
ATACMS and all sensors, links, and command centers WMch enable integration across
system and service boundaries. The complexity, multiple interfaces, and joint nature of
planned ATACMS operations demands accurate specification of software system
requirements. DOD also desires automated tools capable of developing rapid prototypes
to assist in system definition and reduce system risk.

The goals of this thesis are to provide a rigorous model which can be utilized to
validate current specifications, and, to demonstrate CAPS on a large scale project.
Accomplishment of these two would provide a needed corroboration of the ATACMS
specification, as well as move CAPS out of the purely academic environment.

The result of this thesis is mixed. Due to a paucity of data from which to derive
the requirements, the model is generic in nature and is in need of significant customer
evaluation, which is not forthcoming. However, CAPS demonstrated its fundamental
concept within the bounds of the project, with refinements in code generation, interface,
and graphics either incorporated or identified. CAPS is ready for use on an actual project

by an experienced team of systems analysts.

A, PROBLEM STATEMENTcccooeviuiiieeineisieeeeeeeeeeeseeeeeeesees e
B. RAPID PROTOTYPING & CAPS ...,
C. METHODOLOGY & DELIVERABLEScccccooevoiieeeeeernan
D. ORGANIZATION OF THESIScccoomoioeirieeeeeeeeeeeeeeeeeeeeeeeeeeen,

A TASKING ..ottt

B

C. GOALS ...ttt

D. INTEGRATED BATTLEFIELD TECHNOLOGY ARCHITECTURE
(IBTA) HANDBOOK ooooometmmeeeseeeeeeeeeeeeee oo
E. ATACMS END-TO-END SYSTEMcocoooivimimiieeeeeeeeeererern,
L SenSOTIS ..ottt
2. Command Centerscccooeveveereeuvenennnen. e
3. Communications Linksococooiiiiiiieieieeeeeeeee,
4. ATACMSFiring Elementcccccccoviviincincinincnieienennn,
F. REAL-TIME SYSTEMS ..o,
G. COMPUTER AIDED PROTOTYPING SYSTEM (CAPS)
H. SPECIFIC METHODOLOGYccccootiiiiiiieieeeeeeeeeeeeeeeeeeeee e
IOI. REQUIREMENTS MODELSccooooiiiiieieeeeeeeeeeeeeeen s
C A ANALYSIS oo
1. General AnalySisocoooviiiiiiiiieeceeeeeeeeeeeeeeeeeee
2. Components. ..
B. BASICMODELccooiiiiiiiiiieieeeeeeee e,
C. REFINEMENT L ..o
D. REFINEMENTII ..o

W O W A W W N

...

D. SUMMARY ..ottt ettt ettt sseas
LIST OF REFERENCEScocooiiiiiiiincetre ettt esses e s sns
APPENDIX A. BASIC MODEL GRAPH AND PSDLc.ccooovieieeieieeenne,
APPENDIXB. REFINEMENT I GRAPH, PSDL, ADA SOURCE CODE
APPENDIX C. REFINEMENT I GRAPH AND PSDLccccocemiiieeeeenne.
APPENDIXD. CAPS MINI-TUTORIALSccoccoiiiiiiieteeeeeeeeeeeee e
INITIAL DISTRIBUTION LIST ..ot

viii

40
43

ACKNOWLEDGMENT

To Dr. Lugi, Dr. Berzins, and Dr. Shing, we would like to express our most
profound thanks for the many hours of patient guidance. We stand in professional
admiration and are most grateful for our association with the CAPS group. We wish you
all the best in your future endeavors.

To our wives, Tammy and Cathy, and our children, Matthew, Christine, Jenny, and
Michelle, we owe you a debt that can never be repaid. To you, who have always provided
the loving homes where we may seek refuge and fulfillment, go our fullest measure of love
and thanks. |

To aloving and gracious God, we give humble thanks and praise, knowing that

without Your blessing and guidance none of this would matter or be possible.

ix

I. INTRODUCTION

A. PROBLEM STATEMENT

The requirements of modern joint warfare have driven the Department of Defense
(DOD) to seek improved interoperability between systems of the different services as well
as more responsive and flexible employment of intra-service systems. Additionally, the
advent of modern technological warfare has placed a new emphasis on Command,
Control, Communications, Computers, and Intelligence (C4I). Combat users require the
ability to access and utilize data from a variety of platforms in an environment of ever
more stringent time and accuracy demands. The ability to deliver real-time information
from sensor to shooter is the primary goal of the new integrated systems which will be
fielded in the next century.

Coexistent with the increased operational capabilities is an increase in the
complexity and difficulty of defining, designing, and developing complex weapon systems.
DOD recognizes the current inadequacy of their requirements generation process. DOD
desires the evaluation of automated tools to assist the systems analyst in rapidly
developing accurate systems requirements.

The topic of this thesis is the software system requirements needed for the
development and deployment of the new, long range Army Tactical Missile System
(ATACMS) and the other C4I systems which together comprise what is termed the “End-
to-End” System. The new, longer ranged ATACMS necessitates the incorporation of
other services’ systems in order to fully achieve its maximum combat capability but this
need also makes systems analysis more difficult.

The placement of the ATACMS within a “system of systems” brings with it several
programmatic difficulties. Firstly, without any single cognizant technical authority to be
responsible for the entire system, each system component is developed and deployed
without planned integration with any of the others. Secondly, testing, either
developmental or operational, is difficult and often prohibitively expensive. Thirdly,

systems are integrated after their requirements are fixed, rather than defining generic

requirements to which new components can be designed. Fourthly, the scale and
complexity of these systems require the use of computer based tools to assist the analyst in
accomplishing the analysis.

To address these difficulties on the upgraded ATACMS project, the Director,
Test, Systems Engineering & Evaluation developed a Memorandum of Agreement (MOA)
[Ref.1] which attempts to encompass the entire End-to-End System and bring together all
parties responsible for fielding a successful long range ATACMS with interoperability
capabilities. The purpose of this MOA is to focus on interface issues. In an attempt to
minimize or eliminate complete system testing, the DTSE&E is interested in modeling and
simulations which could assist in determining and verifying interface and component
requirements. |

To this end, the Computer Aided Prototyping System (CAPS) research group at
the Naval Postgraduate School (NPS) is assisting in evaluating and refining the software
system requirements for the ATACMS End-to-End System as well as demonstrate the
capabilities and suitability of CAPS on a large real world system.

This thesis analyzes the ATACMS system, specifies system requirements, identifies
unknowns and constructs a model using CAPS which demonstrates those requirements in
a operating model so that the requirements can be verified and refined through subsequent

iterations. Additionally, CAPS is evaluated as a requirements generation tool.

B. RAPID PROTOTYPING & CAPS

The use of prototyping in engineering hardware has a long and successful legacy
but is relatively unused in software development. The application of software prototyping
to the ATACMS requirements analysis enables us to ascertain the vital system attributes
without completely specifying or writing the code for the entire system. In fact,
prototyping is most appropriate on systems lacking strong definition. Since the target
system is not that well defined it becomes necessary to make several iterations of the

model, each being verified by the users as to correctness and suitability.

This use of a prototype model constructed rapidly and efficiently is only possible
through the use of computer assistance. The CAPS system provides a set of integrated
tools optimized for the rapid development of reliable and accurate real-time prototypes.

These tools allow the developer to design, construct, execute and debug the prototype.

C. METHODOLOGY & DELIVERABLES

The general methodology used to develop the requirements and construct the
prototype consists of analyzing pertinent documents defining and describing the End-to-
End System components to determine the essential system attributes and constraints on
the architectural level. From this analysis a series of models based on a single instance of a
“sensor to shooter” path is constructed, which identifies known system requirements,
identifies system significant unknowns, and where necessary, incorporates substitute
requirements to keep the thesis at the UNCLASSIFIED level. Wherever possible, generic
requirements are developed so as not to limit the model’s utility to a single instance. The
essence of the work is in its simplicity and ability to distill only the essentials into the
model.

The deliverables are an executable prototypes (with an non-executing extension),
the prototyping language description for each, source code, and this thesis write-up which
includes an evaluation of CAPS as a requirements generation tool. The models are
available for review by any of the DOD and ATACMS stakeholders, with the intention of
performing subsequent refinements as well as the substitution of actual classified

parameters.

D. ORGANIZATION OF THESIS

In addition to this introduction the thesis contains Chapter II which provides
sufficient background information to make the thesis a stand-alone document. Chapter IIT
describes the analysis and the three iterations of the models in detail. Finally, Chapter IV

provides the conclusions of the research and some recommendations for follow-on work.

II. BACKGROUND

A. TASKING

In 1994, the Office of the Under Secretary of Defense began development of a
Memorandum Of Agreement (MOA) which would establish, among other items, the
system level Critical Operational Issues (COI) involved in the operation of the Army
Tactical Missile System (ATACMS) End-to-End System. [Ref. 1] The End-to-End
System contains those constituent components which allow the ATACMS to access, use,
and be used by other units (or'even other services) than the one to which it is assigned.
This concept, known as “sensor to shooter”, consists of a high degree of interoperability
and connectivity, allows each commander a wider range of options and each user access to
more applicable and timely data, and acts as a force multiplier.

The MOA was necessary since many of the assets involved in successful
employment of the ATACMS are outside the cognizance of the Army. Recognizing that
the majority of problems do not occur in the technical performance parameters of
individual systems, but instead involve interoperability and connectivity issues [Ref. 2],
the Office of the Director, Test, Systems Engineering & Evaluation (ODTSE&E),
approached the CAPS research group at NPS about using CAPS to assist in defining
requirements and identifying COI’s for the ATACMS End-To-End System while at the
same time demonstrating CAPS on a large real world problem. An initial request to use
CAPS as a tool for Developmental Test & Evaluation was also made, but later deleted
from the tasking. |

The Draft MOA defined the ATACMS End-to-End System from the battlefield
architecture for deep operations as defined in the U.S. Army’s Integrated Battlefield
Targeting Architecture (]BTA) Handbook. For the purposes of defining the scope of the
evaluation, the ATACMS End-to-End System was defined as follows:

* Target Acquisition (TA) systems include the Special Operations
Forces (SOF), GUARDRAIL Common Sensor (GRCS), Joint
Surveillance Target Attack Radar System (JSTARS), Unmanned Aerial

Vehicle (UAV), and other theater, Army, and national surveillance
assets. Target acquisition systems include the procedures, people,
communications and automated systems in the Analysis and Control
Element at Corps level.

¢ Fire Support Command, Control, and Communication (FSC3)
systems include the procedures, people, communications and
automated systems in the Deep Operations Coordination Cell (DOCC)
and echelons below Corps that provide targeting and fire control
information to the firing batteries.

¢ Fire Mission Execution (FME) systems include the procedures,
people, communications and equipment at the MLRS battery that
execute fire missions and the performance of the missiles and
submunitions. [Ref. 3]

ODTSE&E has a particular concern with the interface between the TA and the
FSC3 elements since those are the least defined with respect to scenarios, testing criteria,

and requirements research. [Ref. 1]

B. JUSTIFICATION '

Models of large multi-platform systems can be correctly repreéented by several
methods whose approach is radically different. Each method has its strengths and
weaknesses. While appropriate and adequate for defining the scope of the work, the
delineations contained in the MOA were not a suitable basis for the models. The general
approach is to define the system according to its modular functionality, thus allowing the
greatest latitude for future modification and also making interpretation and comment by
the users easier. The modeling process was begun with the intent to model the CAPS
operators using generic descriptions which enables the system in a very simple manner to
represent most, or possibly all, the possible scenarios. Instead, the focus on a single
instance of “sensor to shooter” is used since the attributes of each individual object in the
system are very similar to those of other objects performing the like function (further

refinement into a generic model is anticipated in future work).

A second, and perhaps more important and constraining difficulty, is the lack of a
unified point of contact through which to access the information needed to ensure that the
represented systems are being accurately modeled. The tasking office (ODTSE&E) has
no demonstrated technical background and appears to be a reporting point for the various
programs involved in fielding the End-to-End System. Additionally, much of the
information needed is highly classified, unattainable or in aggregate beyond the scope of
acquisition from NPS. Based on our experience with fielded military systems and with our
modeling experience in the CAPS group, a decision was made to make a best estimate of
the requirements for the End-to-End System, providing our own specific parameters and
abstractions. Where and how these were used will be noted. To make the model truly
useable the parameters of the actual components will have to be supplied, verified, of
modified by the user(s).

A third difficulty encountered is the use of a single platform for the CAPS system.
The ATACMS End-to-End System is a multi-platform integration of distinct operational
subsystems. It is possible, within limits, to abstract the operation of each component so as
to represent its essential characteristics without having to perform each individual function
of that component, and thus to some extent overcome this multi-platform/single
processor dichotomy. Due to the low quantity of operators, we have not been particularly
constrained in our modeling using this method. However, as the operator count (and
subsequent detail) grows, at some point it is likely that our operator loading, combined
with the demands of the UNIX system will exceed our single processor capability.

Given the above, the model which is submitted is a single instance of the
ATACMS End-to-End System using parameters supplied in part by the documentation
and in part by the researchers. The purpose of this model is to demonstrate that a
multilevel model could be quickly constructed and to pass data successfully through this
model, while characterizing/identifying the most important attributes of the operators. In

essence, this is the skeleton on which the details of subsequent iterations will be hung.

C. GOALS
Broadly defined, the goal of the research is to meet the tasking as delineated
while demonstrating CAPS. The Critical Operational Issues for the three functional

areas described above (IIA) and which would impact model performance are as follows:

e Target Acquisition (TA) Do target acquisition systems provide
adequate, timely, and sufficient target location data to FSC3 systems to
effectively employ the ATACMS variants?

e Fire Support Command, Control, and Communication (FSC3)
Do FSC3 systems provide timely and sufficient mission execution
instructions to effectively employ the ATACMS variants?

o Fire Mission Execution (FME) Do the ATACMS variants achieve
the levels of lethality and effectiveness specified by the appropriate
requirements documents? [Ref. 3]

Obviously, these are very general questions from which to ascertain specific and
verifiable goals. Though included in the project Goals Hierarchy for completeness, the
COI for FME was disregarded in the model construction. Thesé COI are mainly
concerned with hardware and physical constraints that are well defined. There are several

high fidelity computer models already in service to use as a testing base for this element.

[Ref. 4]

The goal of the research is to perform a requirements analysis using CAPS which
would further define, and, where possible address, the COI’s for above and provide the
following specifics [Ref. 5]:

o A simplified model of the system’s environment.

e A description of the system goals hierarchy and the functions it must perform.

e Performance constraints on the system.

e Implementation constraints on the system.

e Resource constraints for the development project.

e The specification of the external interfaces of the major components.

D. INTEGRATED BATTLEFIELD TECHNOLOGY ARCHITECTURE

(IBTA) HANDBOOK

The primary source for information about the ATACMS End-to-End System
components comes from a U.S. Army publication series called the Integrated Battlefield
Technology Architecture Handbook (IBTA) [Ref. 6]. Work on the IBTA was begun in
1992 at the direction of US Army Assistant Deputy Chief of Staff (Operations and Force
Development). The purpose of the IBTA is to articulate an integrated battlefield targeting
architecture from the command post view which addresses brigade<>corps horizontal and
vertical integration requirements for maneuver, fire support, Intelligence and Electronic
Warfare (IEW), air defense, and command post operations. The resulting “golden
threads” establish the requirements, interfaces, and throughputs to allow data exchange at
the speed and accuracy required.

The IBTA delineates current and planned C4I systems either employed by or
integrated with the Army systems. Force architectures for the years 1994, 1999, and
2010 are included to show the progression from currently fielded systems through those in
the acquisition pipeline, and then out to those systems in the definition and concept
exploration phase.

The IBTA shows the architecture relationships between units/systems from the
national level all the way down through the individual unit. The main publication in the
series is classified SECRET. Its UNCLASSIFIED topical contents are (actual parameters

are classified):

* An overview of each subsystem, including current capabilities,
projected future enhancements and a classified assessment of the
system.

e Issue specific assessments synopsizing targeting issues by proponent in
fact sheet format.

* Sensor-to-Shooter “golden thread” vignettes identifying targeting data
paths for selected systems.

The vignettes provide a text description of each “golden thread” and analysis of
the data path in five levels of detail:

LevelI- Macro architecture.
e Levelll- A listing of components in the data path.
Level IlI- Approximate timings for operators, processors, and
transmissions.
e Level IV- Protocol, baud rates, formats, and frequency spectrums.
Level V- Additional “next-node” transmission data.

The other primary product in the series is the Architecture Annex which shows in
graphical form the architecture relationships between all systems from Corps to
Division/Brigade, as well as the individual Corps, Division, and Brigade Architectures.
The architectures are also presented by functional areas such as artillery, air defense, and
intelligence. The artillery architectures are particularly useful for analyzing the ATACMS
End-to-End System since the inapplicablé architectures are absent. [Ref. 6] [Ref. 7]

E. ATACMS END-TO-END SYSTEM ‘

The ability to use the Army TACMS to support deep operations has prompted the
Army to begin viewing the ATACMS more broadly, as one component of an integrated
system which can provide “sensor to shooter” capability from a wide assortment of
reconnaissance and sensor platforms through a decentralized control system to widely
separate ATACMS batteries. This employment enables more flexible use and response by
field commanders. |

In this section, the various components which can and will be expected to integrate
into the End-to-End System are discussed. In general the system has been divided into
four functional areas: sensors, command center, links, and shooter. Detailed description
of the actual ATACMS firing element architecture (as opposed to the End-to-End System)
is not included, as mentioned earlier, due to its system maturity. The links are between
sensor-command center, command center-shooter, or are contained within the described

subsystems (important for decomposition).

10

1. Sensors

The IBTA contains all current and planned sensors which associated field units will
encounter. Some of these sensors are used primarily for purposes other than artillery
strikes and are not included in this discussion. The range of sensors include ELINT,
SIGINT, and HUMINT sources. Some of the assets are Army, some are Air Force and
some are national assets. Detailed descriptions of selected sensors are detailed below
within the limits of classification. [Ref. 6] [Ref. 7] Refer to Figure ().

¢ Joint Surveillance and Target Attack Radar System (JSTARS)
This Air Force airborne sensor provides continuously updated data on
enemy force moving vehicles. Data provided includes direction,
location, numbers and rates of movement of enemy vehicles. It also
senses vehicular traffic associated with command posts and air defense
sites. No target ID or correlation is provided. A Moving Target
Indicator (MTI) is provided. Data is collected across a corps area
using a limited Synthetic Aperture Radar (SAR). The current JSTARS
interfaces with the Ground Station Module (GSM), however future
versions will accommodate the Common Ground Station (CGS) as well
as being augmented by the Joint Tactical Information Distribution
System (JTIDS). This system is particularly applicable to deep
ATACMS operations.

¢ Trailblazer/Teammate
This is a division level communications intelligence (COMINT)
sensor which provides radio location voice reports to the division
Analysis and Control Element (ACE). This system is being phased
out in favor of the Ground Based Common Sensor (GBCS) described
below.

¢ Ground Based Common Sensor (GBCS)
This sensor provides an all weather, day/night, on-the-move, automated
and integrated COMINT, ELINT, EW suite for HF, VHF, UHF, SHF,
EHF frequency bands. The GBCS is 100 percent interoperable with
the Army QUICKFIX (AQF), US Marine Corps Mobile Electronic
Warfare Support System (MEWSS), US Navy fast attack submarines,
and selected Navy combatants.

11

Q3HISSYIONA LAVIA

S R S TR W e g

SNOY Isuury) 1o

. ARMV 5di5)
covmy R vv Auedasog [_isva_]
3 avmos .ﬁ» —l—l {054 % 03] Arg (3543 0T]

BND

sNoY ¢ v‘q‘&

.52
: [H
o g
g
g
3
Latsis opd)
a7

#1N03S y-HY 6 ¢ 1N pwD ug EVID]
G % OPHY S) oua LY8OVL) suaos muopmy SAJY

Jp3 09 ggﬂlﬂdu& VA LYBIVL JHA)

u).a-:x:e‘vc!. doyo) N

o)~

TLIHAIHN RUINNINO)
. ‘I:;:.S
9228y Ay SOHD

o "
4
sone $03:nse s L AsviLn
o LA -)
5 "suvis wor
swuog e SOVRV f
o NI RIAR
A eoey
40 780V1 01 I3 U]} SUOJIEI|UNLKLOD i1y
R ¢ e
» ooy
Py

1999 Brigade to Corps Architecture [Ref. 7]
12

Figure 1.

2.

Trackwolf/Enhanced Trackwolf

This sensor provides COMINT and DF against threat HF emitters to
Echelons Above Corps (EAC) and national security agencies. This
intelligence supports analysis of deep situation and target development.
Target information is passed via fiber digital data networks. The sensor
is particularly applicable to deep ATACMS operations.

Guardrail Common Sensor (GRCS)

This sensor is a corps level airborne SIGINT system capable of
acquiring both communications and non-communications emitters. It
digitally interfaces with the Commander’s Tactical terminal (CTT).

Unmanned Aerial Vehicle (UAV)
This sensor provides real-time imagery of the battlefield via the CGS
which supports corps and lower echelons with targeting, target damage

assessment, and battlefield management information. It interfaces with
the CGS.

Long Range Surveillance Teams (LRS)/Special Operations Forces
Teams (SOF)

These provide a corps with highly reliable HUMINT collection on
enemy activities from concealed observation posts employed against
second echelon and follow-on forces. Information is generally
consolidated and transmitted at predetermined times via burst
transmissions on a secure Improved High Frequency Radio (IHFR).
LRS/SOF data would be particularly applicable to deep ATACMS
operations.

Command Centers

The IBTA contains all current and planned command centers/command posts/

headquarters from Echelons Above Corps (EAC) down through the individual battery
commands. The command centers are very much aggregate entities in as much as the
“modular” equipment contained in a particular command center may be found at many
different levels of the command structure thus allowing several elements in the
architecture to perform similar/redundant functions. In some cases the command centers

can be customized to meet a particular need.

13

This section contains those C4I elements involved in receiving, processing and
disseminating targeting information and fire missions. Some communications links, while
physically part of the command centers, will be treated separately in the next section on
links. Detailed descriptions of selected elements are detailed below within the limits of

classification. Refer to Figure (1). [Ref. 6] [Ref. 7]

¢ All Source Analysis System (ASAS) This is a multi-source
processing facility located at the corps level. It provides automated
assistance (fully automated in Block II) in analyzing, processing, and
disseminating information and commands to other units. The system is
capable of displaying and monitoring enemy locations, movements, and
identification tags. The system provides for multi-sensor cueing,
correlation, and fusion of data. The ASAS is part of the Analysis and
Control Element (ACE) located the Intelligence Cell at corps
headquarters.

¢ Ground Station Module (GSM) :
This is the processing station for the JSTARS test platform and has had
limited deployment during developmental testing. This station is
currently located at corps and division level headquarters.

¢ Common Ground Station (CGS)
This is a multi-source processing station which is the follow-on to the
GSM. It will be capable of intelligence analysis of JSTARS NTI and
other imagery as available. The station will include a CTT for multi-
platform access, correlation, and fusion in near real-time (NRT).

e Commander’s Tactical Terminal (CTT)
The unit provides target quality data in NRT at selected critical nodes.
Provides simultaneous full duplex data and half duplex voice
communications between selected theater sensors and deployed CTT
receivers. The CTT can transmit in individual, group, or broadcast
modes. The CTT can receive the Tactical Information Broadcast
System (TIBS), Tactical Related Applications (TRAP), Tactical
Reconnaissance Intelligence Exchange System (TRIX), Unmanned
Aerial Vehicle (UAV) imagery, and ASAS output.

¢ Advanced Field Artillery Data System (AFATDS)
An enhancement to the Tactical Fire Direction System (TACFIRE)
which provides increased automation for command and control of

14

indirect fires. It accommodates all existing combat net radios (CNRs),
LANs, and fielded data communications systems and equipment. It
provides seamless vertical and horizontal interface for command and
control of fires.

3. Communications Links

The IBTA contains all current and planned communications links used to connect
the various architectures. The links include voice and data as well as RF, land-line, and
LANs. Detailed descriptions of selected elements are detailed below within the limits of
classification. Refer to Figure (1). [Ref. 6] [Ref. 7]

¢ Joint Tactical Information Distribution System (JTIDS)
This is an advanced line of sight (LOS) radio for intra-theater tactical
information distribution. Transmission occurs at prearranged times,
with the radio receive capable during other periods. One terminal in
the JTIDS network acts as a time reference. The system is very
expensive and is currently only planned for deployment with the air
defense elements.

® Tactical Information Broadcast System (TIBS)
This system provides NRT information via an area broadcast.
Producers on TIBS provide sanitized, fused information to passive
receivers. This information is presented on a user-filtered, graphics
oriented display. The CTT is capable of receiving and displaying TIBS
information.

¢ Surveillance & Control Data Link (SCDL)
A unique data link system used by the JSTARS test bed. In the
production version this is to be augmented by JTIDS. The GSM, and
later the CGS will be capable of receiving SCDL information.

e Combat Net Radio (CNR)
A series of radios with varying capabilities which when combined form
a loose network of RF communications. The Single Channel Ground-
Air Radio System (SINCGARS) is a secure frequency hopping LOS
radio capable of voice and data transmissions. The Single Channel
SATCOM (S/C SATCOM) is a longer ranged CNR employed by
remote users.

15

e Common Data Link (CDL)
A family of modular communications hardware which provides secure
data link for SIGINT and IMINT from/to all linked elements. The
Army uses the CDL for communications between the GRCS and the
the Integrated Processing Facility (IPF), and also the U2R airborne
ASARS and the Enhanced Tactical Radar Correlator (ETRAC).
4. ATACMS Firing Element
The IBTA contains all architectural levels between corps and the actual firing
battery. Though there are many different configurations possible, all are predicated on use
of the AFATDS. Since this system is already fielded and has received wide operational
use, the architecture below the AFATDS interface is not critical to understanding and

quantifying the attributes and behaviors of the End-to-End System. Refer to Figure (1).
[Ref. 6] [Ref. 7]

F. REAL-TIME SYSTEMS
When viewed as a total system, ATACMS, as described in the previous section,
encompasses behaviors which are commonly referred to as real-time. There are many

different definitions of real-time systems. The following is a good general description:

"In real-time computing the correctness of the system depends not only on the
logical result of the computation but also on the time at which the results are
produced" [Ref. 8]

If these timing constraints are not met, then a failure has occurred. Hence, it is
essential that the timing constraints of the system are strictly observed, which in turn
requires that the system be predictable and reliable. Real-time systems may be further

categorized as follows:

A system where "performance is degraded but not destroyed by failure to
meet a response time constraint is referred to as a soft real-time system."
Systems where "failure to meet a response time constraint leads to system
failure is a hard real-time system" [Ref 9]).

16

The definitions of "hard" and "soft" are not universally defined. An alternate
definition uses "hard" and "soft" to describe the degree of time constraint. Also, real-
time systems are not "perfect" or "bug free" systems, but rather have well defined failure
rates and resultant behaviors. In fact, assessment of failures with respect to system
definition can be one of the major goals of prototyping.

One of the fundamental properties of real-time systems is “that some or all of its
input arrives from the outside world asynchronously with respect to any work that the
program is already doing" [Ref. 10]. The program must be able to block its current
activity and then execute some other task, and when done, it must return gracefully to the
previous task . Executing several tasks in what is, or may appear to be, in parallel (parallel
vs multitasking), is a key characteristic of all real-time systems.

It is important to emphasize that “real-time” is not synonomous with “fast”.

It is not the latency of the response that is at issue (it could be of any magnitude), but "the
fact that a bounded latency sufficient to solve the problem at hand is guaranteed by the
system. In particular, it's frequently true that algorithms that guarantee bounded latency
responses are less efficient,” and thus slower, than algorithms that do not. [Ref. 11]

During the ATACMS analysis we identify the real-time attributes in the system as

well define component and system failure rates and modes.

G. COMPUTER AIDED PROTOTYPING SYSTEM (CAPS)

In the classic approach to developing software, known as the waterfall method, a
development project proceeds in discrete phases each of which consists of analysis, design,
implementation, and testing. An essential characteristic of this approach is the thorough
definition of requirements prior to the commencement of implementation. Any problems
encountered in the testing phase are discovered only after significant investment in time
and money. [Ref. 12]

Rapid prototyping is an alternative method which allows the quick development of

an executable pilot program which can then be reviewed by the user for accuracy.

17

Through repeated iterations of the prototyping cycle (Figure 2) the user validates the
requirements of the proposed system. Upon validation, the requirements serve as a basis
for production software. In many cases, the prototype serves as a starting point for
production code. However, it is important to remember that there are some important
distinctions between the prototype and the production version [Ref. 13]:

» The prototype may not include all aspects of the production version.

e Prototype resources may not be available in actual operating environment.

e The prototype may have limited capacity.

¢ The prototype might meet timing constraints only with respect to linearly

scaled time.

Initial
+ Goals
Design’

— | Det © [Prototype

Requirements | Requirements

System
Prototype
User Demonstrate
Validation Prototype

New
Goals

Construct <
Production System Modularization & Objects

¢ System

Production
Use

Figure 2. The Prototyping Cycle [Ref. 13]

18

The Computer Aided Prototyping System (CAPS) is an integrated software
development environment which is at the heart of the requirements generation process
used in this thesis. The Prototype System Description Language (PSDL) in CAPS is
designed for specifying hard real-time systems. The PSDL descriptions produced by
CAPS provide a formal and unambiguous definition of the modeled system.

CAPS consists of four major components: a set of editors for design entry, a
software base of reusable components, and an execution support system to build the

executable prototype (Figure 3).

Figure 3. The CAPS System [Ref. 14]

19

By using the CAPS graphics and text editors the user can create a prototype

which specifies the essential requirements of the system. The editor enforces consistency
and enables rapid construction of a rigorous and accurate model. The system uses the
Transportable Application Environment (TAE) to build a medium fidelity graphical user
interface (GUI) for the prototype. Once the prototype is specified the user translates and
schedules the prototype and then automatically creates an executable driver program
which incorporates the requirements of the specification file. [Ref. 15]

CAPS also contains a software database system which consists of a software
database, design database, a software reuse facility, automated system management, and
version control. The software database tracks PSDL descriptions and ADA
implementations for all CAPS reusable software components. The design database allows
management coordination of concurrent team design efforts.

One of the most important issues to the prototype designer using CAPS is the
treatment of real-time constraints identified during the analysis. It is important to
understand CAPS’ behavior in this respect. Atomic operators in a CAPS data flow
diagram become ADA procedures in the implementation. Prioritizing these procedures
into time critical (high priority) and non-time critical (low priority) is fundamental to
specifying a real-time prototype. Determination of time criticality is an integral part of the
systems analysis. In CAPS, criticality is represented by the assignment of a Maximum
Execution Time (MET). The MET is the longest period between the time the operator
begins execution and time it completes execution. [Ref. 16]

Figure 4 shows a segment of the augmented data flow diagram from the ATACMS
prototype. Note that the operator "asas_op" has a MET of 200 ms assigned to it. The
presence of this MET means that the CAPS scheduler will treated it as a time critical
operation. The absence of 2 MET, such as in operator "lan2_link_op" below, means that

the CAPS scheduler will treat the operator as a non-time critical operation. [Ref 17]

20

fire_cmd1_str

Figure 4. Sample DFD Segment

A further expansion of the domain of tasks begun above yield the Venn diagram in

Figure 5. A discussion of time critical tasks follows.

e Characteristics

A time critical task is one that has a timing constraint associated
with it. In CAPS, an operator having a MET is considered time
critical and will be scheduled in the static schedule loop of the
prototype driver task located in the "<prototype name>.a" file(the
prototype driver file). These tasks are considered HIGH priority.

Domain of Tasks

r'
- : Time Critical Tasks) *on-time Critical Tasks h

*Periodic Tasks Apenodic Tasks

*Sporadic
Tasks
_/

* CAPS available tasks
Figure 5. Domain of Ada Tasks [Ref. 18]

21

e Triggering

There are only two ways to trigger time critical tasks. The first
is using a time event and these tasks are called periodic. An
example is an airborne phased array radar like on the JSTARS
aircraft that scans the battlefield at regular intervals. The second
way to trigger a task is with a physical event and these tasks are
called aperiodic. An example is using a mouse to press a Quit
button on a GUI. A subset of aperiodic tasks are sporadic tasks.
The distinction is subtle and will be discussed later. [Ref 18]

e Periodic tasks

Periodic tasks are those which must be accomplished at regularly
scheduled intervals (though some variance may be introduced through
“jitter”). The requirements analysis will normally drive the size of the
period. In a hard real-time system, failure to meet this timing constraint
will, by definition, lead to system failure (see Chapter IIF). The CAPS
scheduler starts with periodic tasks when it builds the prototype's static
schedule.

e Aperiodic tasks

These are tasks triggered by some external event such as pressing
a mouse button or detecting a hardware interrupt. [Ref 19] The
driver program periodically looks for the triggering event and then
executes the task in the required MET. The time between “looks”
for the triggering event is the "trigger period" of the aperiodic event.
[Ref. 18] It should also be clear that where a normal system may just
ignore an event if it happened at a rate faster than the system could
execute the triggered event, a real-time system should be built to
handle a defined worst case situation. To handle this worst case
situation of repetitive inputs without overflow, CAPS incorporates a
special sub-type aperiodic task called a sporadic task. Sporadic tasks
are aperiodic tasks in which a minimum period between any two
aperiodic events is required. [Ref. 19] In CAPS, they are triggered
by the arrival of data on data streams.

22

The following describes the non-time critical tasks:

o Characteristics

A non-time critical task is one that does not have a timing
constraint associated with it. In CAPS, an operator without a MET
is considered non-time critical and will be scheduled in the dynamic
schedule loop of the prototype driver task located in the
"<prototype_name>.a" file. These tasks are considered LOW
priority and will be executed on a time permitting basis. They
execute during periods of availability in the static schedule and are
triggered by the arrival of data on a data stream.

Thus, the three operator options available to the CAPS prototype designer are the

periodic, sporadic, and non-time critical operators.

H. SPECIFIC METHODOLOGY

This section describes the specific methodology used in analyzing and building the |
prototype of the ATACMS End-to-End System. This description is provided so the
reader may understand the reasoning behind many of the research and design decisions |
which are described later. Mid-research changes made in the approach will be highlighted .
as well as the reasons for such changes.

Firstly, we contacted the ODTSE&E to determine potential customers or
stakeholders and to determine the technical points of contact who could assist in supplying
information or assisting in research. We concluded that the only recognized stakeholder
was the tasking office. v

The problem of managing a multi-service project such as this one has not been
adequately addressed. No existing overall authority was found for developing and
disseminating the software requirements and thus the component authorities were, or
wished to be, limited in their support. Each element in the system is managed by a

separate agent. As best as we could ascertain there is no central database which contains

23

the necessary data to construct a verifiable model. The alternative, detailed interviews
with technical personnel familiar with each element, was logistically and programatically
unfeasible.

The essence of the problem is the lack of attainable, accurate, and verifiable data of
the quantity and quality needed. This is acerbated since, at this stage of the design cycle,
the large portion of classified information precludes ascertaining the general requirements
needed. The tasking office does not have the resident technical expertise and can only
assist in requests for information.

The above impacted the research and model development as follows:

o Required application of resident expertise in defining the requirements.

o Substitution of classified data with replacement data or placeholders clearly
identified as such.

. Construction of the model as a tool to study and gain experience in the

modeling process vice concentration on useable output.

Using the IBTA, ATACMS performance specifications, and interviews with some
of the principals involved, work on a single instance model was begun. The first was a
basic model of the system used to verify communications between operators in the system.
Refinement I of the model incorporated some of the functions identified during the
analysis phase as being essential to modeling the system as well as more appropriate‘ data
types. Refinement II involves expanding the model to include other sensors and alternate
data paths and is not fully implemented. |

The case for a generic model is strong and alluring. However, given the paucity of
available data, the decision was made to pursue a single instance of the “golden thread”
and then progress to a more general model as time permitted. The selection of the
JSTARS to ATACMS thread from the IBTA was due to the relatively good data available

for it.

24

III. REQUIREMENTS MODEL

A. ANALYSIS

L. General Analysis

This chapter describes the systems analysis done on the ATACMS End-to-End
System as it pertains to the model within this thesis. A general account of the system
requirements is given, followed by a description of the individual iterations of the model.
As additional requirements are added, the analysis for those additional requirements are
given at that time.

The IBTA vignettes described in Chapter IID seek to identify selected data paths
for the various sensor to shooter connections which are most probable and can be used to
generally describe the system. For reasons given previously, the basic model represents

the JSTARS to ATACMS data path and is outlined in the customer description:

Intelligence data is collected by the JSTARS, which is linked to a Common
Ground Station (CGS). Data from the CGS is provided to the All-Source
Analysis System (ASAS) or Advanced Field Artillery Tactical Data System
(AFATDS), depending on the mode of operation. In the ASAS, the
information is included in a database and made available to authorized
users. The DOCC utilizes the AFATDS which uses the targeting related
information via a call for fire message. This data is then passed along
through the field artillery communications nodes, where it winds up as
firing data for an ATACMS equipped unit.

To review, the JSTARS is an airborne radar platform which provides video data to
selected ground stations. The Common Ground Station (CGS) is a communications
station which is being acquired and which will be able to receive both voice and data from
a variety of sources. The ASAS is the locafion at Corps HQ where the data from the
various sources is centrally collected, processed and disseminated. The AFATDS is the
fire control system used by the artillery units to communicate and disseminate fire

missions.

25

The Deep Operations Coordination Center (DOCC) is a new element being added
to Corps HQ to handle operations beyond the normal corps battlefield. Available
hfomation on the DOCC is minimal, so the Corps Tactical Operations Center (CTOC)
was substituted since its attributes would likely be very similar.

Using the above vignette and drawing on our experience and knowledge of like
systems, the following goals hierarchy was developed. Due to the unavailability or
classification of many of the criteria used, we have elected to use a substitute set of

numerical requirements. These are represented by the following variable series:

. P; series denotes required probabilities
o T; series denotes required time constraints
J E; series denotes required error limits (percent)

To the IBTA vignette we added a global performance statement:

The system must successfully identify, process, target, and launch within
operational time constraints, and success & error rates (Tiotat , Protat 5 Ertotal)

From the vignette and global performance statement we developed a

goals hierarchy which would guide the design and implementation of the model
(Figure 6).

Gl JSTARS will detect enemy targets, and, generate and transmit JSTARS video
G1.1 JSTARS will correctly detect enemy targets with at least P; accuracy
G1.2 JSTARS will generate and process video in at least T; time.
G1.3 JSTARS will not generate more than E; percent errors.

G2 SCDL will transmit the JSTARS video to the GSM
G2.1 SCDL will transmit the JSTARS video with at least P, accuracy
G2.2 SCDL will transmit the JSTARS video in at least T, time.

G2.3 SCDL will not generate more than E, percent errors.

26

G3

G4

G5

Command Station will receive, process, and act upon the JSTARS video
G3.1 GSM will receive, process and forward the JSTARS video
G3.1.1 GSM will perform with at least P; accuracy
G3.1.2 GSM will receive, process, and forward the JSTARS video
in at least T; time.
G3.1.3 GSM will not generate more than E; percent errors.
G3.2 ASAS will process GSM video, identify and prioritize threats, and
forward target list
G3.2.1 ASAS will perform with at least P4 accuracy
G3.2.2 ASAS will receive, process, and forward the JSTARS video
in at least T, time.
G3.2.3 ASAS will not generate more than E4 percent errors.
G3.3 CTOC will generate firing command(s) from ASAS target list
G3.3.1 CTOC will perform with at least Ps accuracy
G332 CTOC will receive, process, and forward the JSTARS video
in at least Ts time.
G333 CTOC will not generate more than Es percent errors.
CNR will transmit fire missions to the shooter
G4.1 CNR will transmit the fire missions with at least Ps accuracy
G4.2 CNR will transmit the fire missions in at least T time.
G4.3 CNR will not generate more than Es percent errors.
The shooter will fire in response to received fire missions
G5.1 CNR will transmit the fire missions with at least Ps accuracy
G5.2 CNR will transmit the fire missions in at least T time.

G5.3 CNR will not generate more than E¢ percent errors.

Figure 6. Goals Hierarchy

27

Normally, when developing the specification for a system, specific consideration is

given to the following five constraints on the system:

o Resource - schedule, budget, manpower

. Performance - execution time, accuracy, memory, system down
time

. Environment - hardware, operating system, external systems

. Form - Programming language, coding & documentation standards

. Methods - development tools, testing procedures, performance

benchmarks [Ref. 5]

However, when using rapid prototyping to quickly identiﬂ system requirements
and projected performance parameters, many of the above considerations fall out of scope.
In general, the focus is on performance and environment, though considerations from the
other constraints can be, and often are included. Much of the work is also done at the
functional specification level since one of the main purposes of the model is the definition
of the external interfaces. The use of representative data types accomplishes much in

representing these interfaces, with PSDL attributes used to define the remainder.

2. Components

In this section we will analyze the particular requirements of the individual
components. A brief description of the attributes of each of the operators identified in the
JSTARS to ATACMS data path are included. These descriptions are a compilation of
both known and presumed attributes. Many items listed would be necessary in later
refinements to make the system model more robust. Also, for most of these operators it

is vital to keep in mind the discussion on quantity of operators given in Chapter IIB. [Ref.

6] [Ref. 7]

¢ Target Emitter
The model must include an operator which simulates the “real” world
in the sense that targets are placed and removed, and they “emit”, either

28

actively or passively, detectable amounts of EM radiation. This is not
part of the ATACMS system. Target Emitter would operate at a
period sufficient to test the reaction time of the system. It would
include in its target generation all the information which could be
discerned from the target (i.e., derived attributes) itself by any sensor
observing it (currently limited to JSTARS). Since the real world
emissions occur instantly this operator would need to function in a
short period so as not to disturb the basic behavior of the system

JSTARS

Since JSTARS generates a continuous series of video frames to be
transmitted to receiving ground stations, its operator in the system is
periodic. However, given the restrictions of our single processor
system, the period needs to be as long as possible (and still meet the
system update needs) rather than a continuous cycle. The JSTARS
operator has a requirement for functions to generate a video picture,
inject simulated errors, and have timing delays to represent operator,
processing, and internal transmission time (as opposed to latency).

SCDL Link

The system contains an automated link between the JSTARS and
Command Station modules. Since the link operates upon the receipt
of a video frame from JSTARS and must finish within a prescribed
time, it is a sporadic operator. The essential attributes of this operator
are protocol, baud rate, formats, average message size, and bandwidth
(and a derived latency attribute). The link also has a requirement for a
function to introduce noise/error into the transmission. Internally, there
is no modification of the video picture (exception: noise/error).

Ground Station Module

The system includes an operator to receive and process the incoming
JSTARS video and forward the data to the ASAS on the ASAS LAN.
Since the link operates upon the receipt of a video frame from SCDL
Link and must finish within a prescribed time, it is a sporadic operator.
It is unknown at present what the GSM processing capability is. In our
model the GSM will be required to “build” its own video picture for
transmission with some defined susceptibility to error. The GSM has
requirements for timing delays to represent operator, processing, and
internal transmission time (as opposed to latency).

ASAS LAN
Within the decomposed Command Station operator, all internal
communications are accomplished via the ASAS LAN (in our model

29

the LAN appears between the GSM and the ASAS, and also between
the ASAS and the CTOC). Since the link operates upon the
transmission of data from a sender, and must finish within a prescribed
time, it is a sporadic operator. The essential attributes of this operator
are protocol, baud rate, formats, average message size, and bandwidth
(and a derived latency attribute). The link also has a requirement for a
function to introduce simulated noise/error into the transmission.
Internally, there is no modification of the data (EXC.: noise/error).
The LAN uses the U.S. Message Text Format (USMTF).

ASAS

The system includes an operator to represent the ASAS’ capability to
accept incoming target and intelligence data and perform evaluation
and targeting functions. The ASAS determines a priority target list
based on a predetermined algorithm and forwards the target list, one
target at a time, to the CTOC on the ASAS LAN. Since the ASAS
continues to process the target list independent of new data arriving, it
is periodic. However, it also contains a “triggered if” condition based
on the state stream. The target list generation would have a defined
susceptibility to error. The ASAS has requirements for timing delays to
represent operator, processing, and internal transmission time (as
opposed to latency).

CTOC

The system includes an operator to receive and process incoming
prioritized target lists from the ASAS and generate and forward fire
missions to individual batteries on the CNR net. Since the link operates
upon the receipt of a new target list from the ASAS and must finish
within a prescribed time, it is a sporadic operator. It is unknown at
present what the CTOC procedure is. The CTOC has requirements for
timing delays to represent operator, processing, and internal
transmission time (as opposed to latency).

CNR Link

The system contains an automated link between the Command Station
and Shooter modules. Since the link operates upon the receipt of a
firing command from the Command Station, and must finish within a
prescribed time, it is a sporadic operator. The essential attributes of
this operator are protocol, baud rate, formats, average message size,
and bandwidth (and a derived latency attribute). The link also has a
requirement for a function to introduce simulated noise/error into the

30

transmission. Internally, there is no modification of the firing command
(exception: noise/error).

Shooter

The system includes an operator to receive and process the incoming
fire missions from the CTOC and generate a “weapons release” against
the targeted location. The Shooter needs to reply to the CTOC after a
successful launch. Since the shooter operates upon the receipt of a the
firing command from the CTOC and must finish within a prescribed
time, it is a sporadic operator. As previously mentioned, the behavior
of the artillery architecture below Corps is well defined and does not
need to be modeled in detail. The Shooter has requirements for timing
delays to represent operator, processing, and internal transmission time
(as opposed to latency).

The above is a general list of requirements which would need to be verified by the

customer during the review process. They are sufficiently general in nature as to cover the

top level behavior of the components and to act as flags to the customer as to specific data

items which need to be addressed. The operation of the above described system will be in

accordance with the goals outlined in the previous section.

BASIC MODEL

In this section we discuss the design and construction of the basic model (see

graph and PSDL list; Appendix A). As mentioned previously, our purpose was to

implement a basic representation of the system and to verify communications between all

the components. Several output statements were inserted to allow monitoring of the data

propagation. Internal functioning of the system or the suitability of data types was ignored

at this stage (all passed data types are the same). For this reason the Ada source code is

Though the descriptions below are PSDL oriented, the concepts embodied in the
individual attributes should be straightforward. If further detail is desired we recommend

the CAPS group at NPS be contacted notes be consulted.

31

target_emitter_op

This is a periodic operator with a 1 second cycle time, which was
selected to contribute to a low system load factor (we wished to keep it
below 50%). The target emitter produces an output stream
emission_str, which simulates the content of an actual passive or active
emission from the target(s). For test purposes, in the basic model the
target emitter generates a new “target” stream with each cycle. This
new data steram can then be monitored as it propagates downstream.
Desiring to limit the impact of this operator on the total system, a 200
ms maximum execution time is given.

jstars_op

This is a periodic operator with a 1second cycle time, which was
selected so as to contribute to a low system load factor (we wished to
keep it below 50%). JISTARS accepts the emitter str and produces an
error free output stream, target arrayl_str, which simulates the content
of the JISTARS video. JSTARS continuously generates its video
picture independent of whether the target “picture” has changed. The
hard requirement with respect to timing is that JSTARS always operate
at least as often as target emitter to preclude the loss of data (in
general, JSTARS does not deal with a target set which rapidly changes,
see Chapter IIE). Desiring to limit the impact of this operator on the
total system, a 200 ms maximum execution time is given.

scdl_link_op

This is a non-time critical operator which is triggered by the receipt of
all target_arrayl_str from JSTARS. In the basic model the SCDL
Link simply passes on the received data and produces an error free
output stream, target_array2_str.

command_station_op

This is a composite operator which represents the system components
physically located at the Corps HQ. Its elements are the ground station
module (grnd_stat_mod_op), the ASAS LAN connections
(lanl_link_op, lan2_link op), ASAS (asas_op), and the CTOC
(ctoc_op). :

grnd_stat_mod_op

This is a non-time critical operator which is triggered by the receipt of
all target_array2 str from scdl link op. In the basic model the ground
station module simply passes on the received data and produces an
error free output stream, target array3_str which is sent to
lan1_link op.

32

lanl_link op :

This is a non-time critical operator which is triggered by the receipt of
all target_array3_str from grnd_stat mod_op. In the basic model the
ASAS LAN simply passes on the received data and produces an error
free output stream, target array4 _str.

asas_op
This is a periodic operator with a cycle of 4 seconds. In the basic
model the ASAS simply passes on the received data and produces an
error free output stream, fire_cmd1_str.

lan2_link op

This is a2 non-time critical operator which is triggered by the receipt of
all fire_cmd1_str from asas op. In the basic model the ASAS LAN
simply passes on the received data and produces an error free output
stream, fire_cmd2_str.

ctoc_op

This is a non-time critical operator which is triggered by the receipt of
all fire_cmd2_str from lan2_link op. In the basic model the CTOC
simply passes on the received data and produces an error free output
stream, fire cmd3_str.

cnr_link_op

This is a non-time critical operator which is triggered by the receipt of
all fire_cmd3_str from command_station_op. In the basic model the
CNR Link simply passes on the received data and produces an error
free output stream, fire_cmd4_str.

shooter_op

This is a non-time critical operator which is triggered by the receipt of
all fire_cmd4_str from cnr_link op. In the basic model the shooter
simply outputs a “fired” message.

When executed, the basic model runs both the target emitter and the

JSTARS based on the static schedule created by CAPS. After running target

emitter and JSTARS, the prototype runs each triggered operator in sequence until

the data path is complete. As currently timed the basic model completely handles

each new “target” prior to generating a new one.

33

C. REFINEMENT 1

In this section we discuss the design and construction of the first

refinement of the prototype model (see graph, PSDL list, and Ada source code;

Appendix B). The goal of this refined model is to incorporate‘the attributes and

functions which will meet the requirements list delineated earlier. Additionally, a

basic GUI has been added that allows the user to control the prototype operation.

Since many of the attributes are either unknown or classified, placeholder functions

have been used pending identification by the customer and operation of the model

in a secure environment.

A bulletized description of the modifications made to the basic model is

given for each operator, as well as identification of areas where customer feedback

is required. This section should be used as a checklist for user feedback.

e target_emitter_op

Cycle time increased to 16 seconds.

Target generator added (controlled by GUI). User must supply
actual target rates and behaviors for testing scenario.

Array simulates geographical area under observation by sensor

e jstars op

Cycle time increased to 8 seconds.

User must supply actual video data type for either use or
simulation.

Given single processor limitation, user must define a minimum
update rate suitable for target volatility

Placeholder functions added for simulating operator time,
processing time, internal transmission (prep) times, error rate.
User must supply actual values.

Array simulates video format

e scdl_link _op

Error injection function added. User must define actual error
rates and types.

Latency added to data stream (via delay statements). User must
supply actual values.

34

Placeholder functions added for processing time, internal
transmission (prep) times. User must supply actual values.
(assumed an automated system, hence no operator time)

grnd_stat_mod_op

Grid fixing functionality added. User must supply actual
functionality.

Target collation function added. User must supply actual
functionality.

Placeholder functions added for simulating operator time,
processing time, internal transmission (prep) times, and error rates
and types. User must supply actual values.

lanl_link_op

Error injection function added. User must define actual error
rates and types.

Latency added to data stream (via delay statements). User must
supply actual values.

Placeholder functions added for processing time, internal
transmission (prep) times. User must supply actual values.

asas_op
- Changed to a periodic operator with a 4 second cycle.

Prioritization and targeting functionality added. User must
provide actual algorithms and capabilities.
Placeholder functions added for simulating operator time,

processing time, internal transmission (prep) times, and error rates

and types. User must supply actual values.

lan2 link op

Error injection function added. User must define actual error
rates and types.

Latency added to data stream (via delay statements). User must
supply actual values.

Placeholder functions added for processing time, internal
transmission (prep) times. User must supply actual values.

ctoc_op

Currently passes through fire mission. User must provide actual
algorithms and capabilities.

Placeholder functions added for simulating operator time,
processing time, internal transmission (prep) times, and error rates
and types. User must supply actual values.

35

e cnr_link op

- Error injection function added. User must define actual error
rates and types.

- Latency added to data stream (via delay statements). User must
supply actual values.

- Placeholder functions added for processing time, internal
transmission (prep) times. User must supply actual values.
(assumed an automated system, hence no operator time)

e shooter_op
- Fire upon valid command functionality added. User must provide
additional algorithms and capabilities.
- Placeholder functions added for simulating operator time,
processing time, internal transmission (prep) times, error rate.
User must supply actual values.

Additional requirements identified in this refinement of the model are the
overall system timing and accuracy constraints as well as the defined failure modes.
Specifics are not currently incorporated since many of these items are either
unknown or classified. Specific data must be supplied by the user.

One area which presented particular difficulty was the insertion of data
stream latency. Under particular circumstances of time critical operators, long
latencies, and short execution times/periods, it becomes impossible to generate a
valid schedule for the prototype driver program. In lieu of using the latency
feature in CAPS, we chose to insert delay statements into the appropriate
operators. Curfently this generates, as expected, a series of timing errors. These
errors can be isolated in code from errors generated by other causes.

The basic GUI consists of a pair of TAE generated control panels. The
first, Target Panel controls target_emitter_op and enables the human operator to
run, pause and quit the prototype as well as initiate target generation. The Shooter
Fire Mission Panel displays vital target data as it exists after being processed and
transmitted through the system. It also tests andﬂ—displays the communications

status as determined by the receipt of a flag signifying a failure of the system

communications path.

36

Since the purpose of the prototype is to ascertain and verify requirements
and less so as a simulation, the use of script files and text output windows were

heavily used to observe and document the behavior of the model.

D. REFINEMENT II

The model presented in this section represents our vision for a more robust
whole system model which incorporates several elements and data paths not
included in Refinement I. This model is not an executable prototype and is
intended only to show, in coarse terms, how a model incorporating multiple
sensors, varied links, and a more detailed command center might appear.

Several of the operators used in Refinement II are not detailed in either the
system description or system analysis. Lack of data prevented us from using some
of these operators earlier. For instance, the Tactical Information Broadcast
System (TIBS) description seems to indicate some interesting behaviors and
attributes which would not be modeled in any of the other links. TIBS requires a
sensor input, hence the appearance of Rivet Joint, though no details on it are
available at this time. Also, we included the Area Common User System (ACUS)
which was a necessary adjunct to Trackwolf, both of which we wished included.

A description of the modifications and additions to Refinement I resulting

in Refinement II are detailed below, including reasons for selection:

® grcs_op

- This operator represents the Guardrail Common Sensor (GRCS).
Since it is a SIGINT sensor its operations, data type and content,
and thus behavior, would be different from JSTARS.

- While there is no dedicated link for GRCS, some of the link
attributes would pertain to the GRCS transmission and thus would
need to be represented in either gres_op or cgs_op.

37

e rivet_joint op

- This operator represents the Rivet Joint airborne sensor. No
information concerning Rivet Joint was available to us.

- Rivet Joint utilizes TIBS as a link to the Commander’s Tactical
Terminal (CTT).

e Trackwolf

- This operator represents the Trackwolf sensor. This sensor’s
utility in targeting deep targets makes its inclusion in the model
desirable

- Trackwolf utilizes the ACUS.

e uav_op

- This operator represents ground launched unmanned aerial
reconnaissance vehicles. Since it provides raw video, its data type
and content, and thus behavior, would be different from JSTARS.
- While there is no dedicated link for the UAV, some of the link
attributes would pertain to the UAV video and thus would need to
be represented in either uav_op or cgs_op.

e tibs_op

- This operator represents the TIBS. The system appears to have
some data processing and fusion capabilities, thus presenting unique
modeling issues.

e acus_op
- This operator represents the ACUS communication net. It
appears to be a relatively open WAN and thus also presents some
unique modeling issues.

Once a thorough customer review of Refinement I occurs and the

multitude of open issues in that model are addressed, Refinement II can be

used as a launching point for expansion of the ATACMS model.

38

IV. CONCLUSIONS AND RECOMMENDATIONS

A, EVALUATION OF MODEL

Evaluation of the prototype model constructed is limited to Refinement I. The
Basic Model was used only as a starting point to verify some initial relationships and data
flows. Refinement II is simply an expansion of its predecessor and represents preparatory
work in advance of a review with the customer. Refinement IT does not address any issues
concerning accuracy and suitability of either the analysis or the prototype not raised by
Refinement I. Refinement I incorporates a single additional operating data flow which
was used to attempt to quantify CAPS productivity (see next section).

We believe that Refinement I accurately represents the prirﬁary relationships
between the operators identified by the analysis. Secondary and tertiary data flow paths,
such as those used for back-up or streamlined operations have neither been identified nor
incorporated. The prototype is ready for its first evaluation by the tasking office or their
representatives. The issues which would enable progression to the next level of accuracy
and suitability have been identified. The detailed discussions of the requirements models
in the preceding chapter may be used as a preliminary checklist to begin the evaluation
process.

The prototype as currently configured will not provide an accurate appraisal of the
operational behavior of the system. Placement of the actual data values into the both the
placeholder function and the substitution data we provided is necessary prior to evaluation
of the prototype operationally.

Visibility into the model should be sufficient at this stage to do a preliminary
evaluation once the actual data is substituted. Further use of script files and screen
outputs may be useful in the next phase to be able to rigorously verify the prototype. We
found that limiting the GUI to only essential items and avoiding the more robust graphics
significantly reduced the impact on the model. Ultimately this approach ensures a more

accurate evaluation as the prototype grows. While this may not be a critical issue for

39

“soft” real-time systems, “hard” systems demand that non-system operators (e.g. GUI,
model control, etc.) minimize their influence on the actual system operators.

Once the model is updated and verified for the JSTARS to ATACMS thread, it
will be a relatively simple matter to expand the model to encompass other sensor and
weapons, as well as alternate data flows by employing widespread reuse of the operators

and their common contents.

B. EVALUATION OF CAPS

An evaluation of CAPS as a requirements specification tool must necessarily be a
subjective process for the authors. It is difficult to differentiate limitations and
shortcomings imposed by the CAPS environment from those attributable to either the.
paucity of data, lack of actual systems analysis experience, or the learning curve necessary
to become proficient in the use of the system.

From the viewpoint of rigor, CAPS is able, either directly or through derived
attributes, to represent every requirement drawn from the resource materials with the
notable exception of the data stream latency noted in Refinement I of the model. The
automatic scheduling, graphical translation, and code generation were essentially error free
(a pair of one-line changes required for each prototype driver generated currently require
manual correction). Management tools allow the smooth transition between versions and
provide tight control of the development process. In fact, we found that parallel efforts on
small portions of the model were possible. We recommend the use and evaluation of the
database management system on a larger, more detailed effort. Of a special interest is the
ability to exclude portions of the code from various members of a development team, thus
supporting tight configuration management.

While the CAPS system appears generally complete in its functional capabilities, it
does present some areas for improvement. We feel the largest of these is the lack of
documentation of system features and procedures. While fully aware that CAPS has
heretofore been largely in the development stage, breakout into widespread use is going

to be very dependent on the availability of useful and complete documentation of the

40

system. Without the availability of publications or on-line HELP, it would not take a very
large installed base to quickly swamp the CAPS group’s ability to respond to user
inquiries. Also, managers will demand a more rapid ramp up than is currently possible
without such information.

We have attempted to begin the process of collecting and developing a thorough
database for developing the documentation required. Detailed notes were kept
throughout the process, documenting esoteric, erroneous, or difficult to use procedures,
commands and processes. A collection of mini tutorials have been include in Appendix
D.

Though we were not limited in our effort, due to the nature and size of our
problem domain, operating CAPS in a single processor environment poses Challenges
which would be alleviated by completing work on a multi-platform version.

Platform portability, while not a problem for us, is necessary for the widespread
use of the system.

For the immediate future the esoteric nature of some the CAPS procedures,
commands, and processes does not disqualify it from use on an actual project. This is so
for fwo major reasons. Firstly, the distribution and use of CAPS on a wider basis would
present us with the ability to identify and quantify these issues, as well as user preferences,
in much the way a beta release of commercial software does. By this process of user
feedback, we naturally migrate towards a common interface model. Secondly, we foresee
the benefits resulting from the continuing use of CAPS by a modeling concern as
mitigating and recouping the start-up effort the system requires.

We also recommend the complete integration of the TAE multi-file approach. Until
recently, prototypes that used a TAE generated interface utilized what is referred to as the
“single file" approach. In the single file approach, TAE generates one central file that
contains the event loop and procedures that link to all TAE windows. Since CAPS
generates its own main program event loop, the TAE event loop must be subjugated to it.
The conversion of the TAE driver is a manual 31 step process which needs to be redone

each time any item on the interface is changed. Minor changes require large

41

recompilations. The single file paradigm is very monolithic and hard to manage., and it
does not lend itself to decomposition. In the TAE multi-file approach, TAE creates a
panel package for each TAE panel created. Several automated aids have been developed
so that with the incorporation of the multi-file approach, the graphical interface is less of
an impedance to the rapid development of a (especially a large) prototype. In our
estimation, this has been the single most important productivity enhancement to CAPS to
have been incorporated during the time of our research.

With respect to productivity, two significant features demand mention. Firstly, is
the automatic driver code generation. The productive impact of the ability to quickly
generate error free drivers would require a separate analysis beyond our scope. However,
we estimate that the driver code for even a small project would require a programmer with
superior knowledge of Ada tasks several weeks to schedule, write, compile and debug.
Large system prototyping without automatic code generation simply becomes
economically unfeasible. Secondly, is the ability to incorporate rapidly changing design
demands (the essence of prototyping). We performed a small exercise where the CAPS
user was given a requirements change without notice and the result was timed. We
incorporated changes in five of the operators, converting them to time-critical types. This
required the regeneration of the operator schedule and prototype driver program. Total
effort was 2.5 hours. We estimate that an identical effort done manually would take at
least 12 hours (2 hours to develop the schedule, 8 hours to write the changes to the driver
program, and 2 hours to debug) . Had additional operators been required, an even more
pronounced difference would be observed.

To reiterate, we find no “show-stoppers” in the use of CAPS as a.requirements
generation tool. We highly recommend that the next logical phase be undertaken: to
insert CAPS into a real world requirements development effort with a team of experience

systems analysts to evaluate it.

42

C. UNRESOLVED ISSUES

The major unresolved issue with respect to the requirements specification and the
model is the first of what would have to be several customer evaluations and verifications.
This is made problematic by a second issue, that there is no cognizant technical authority
(or convened body) to evaluate the model or guide us in these further iterations. The lack
of a program “sponsor” who can direct or authorize the use of CAPS as an integral part of
the development team constrains both our work and any possible follow on effort.

We would also like to see the requirements utilize more generic definitions, increasing its
utility and range of application

With respect to the CAPS tool itself, we are still uncertain whether CAPS is ready
for widespread distribution as an alternative to current products and processes in place
which have clear shortcomings. The application of CAPS in a beta environment as a (the)
primary tool for requirements generation by a team of experienced system analysts is a
must. Secondly, continued modification of the CAPS’ environment to make it easier to
learn and use, as well as increasing productivity is necessary, even if parallel with the beta
effort. Those must include a major effort at development of a set of references
(publication or on-line). Platform portability will be crucial, and a study of current
platforms in the installed base for other tools should be conducted. We must make CAPS
more user friendly.

Modification of the schedule engine to address the shortcomings associated with
the data stream latencies should be a high technical priority. Without incorporation of
these changes, the prototype developer must resort to a series of less than optimum work-
around.

The following is a summary of suggested projects or areas of research with a first
cut estimate of labor requirements based on our experience with CAPS and like efforts
within the CAPS’ group. The use of NPS graduate students for these efforts, while
cutting costs, would entail a 1.5-2.0 factor for calendar time, since a significant portion of

their time is assigned to other tasks:

43

Development of CAPS System Documentation .5 years
Upgraded Integrated Development Environment 1.0 years
Setup, Training, and Support of a One Year

Requirements Project (including post-project

economic evaluation) .5 years
Platform Portability Study .25 years
Platform Porting (each; some may not be practical) .2 - 1.0 years

D. SUMMARY

In summary, a refined ATACMS model is complete and available for review by
Office of the Director, Test, Systems Engineering & Evaluation (ODTSE&E) or any
designated representative. We believe that with modification of the model to incorporate
actual/classified data that the model is sufficiently robust to assist in identifying those
Critical Operational Issues outlined in the Memorandum of Agreement covering the
ATACMS End-to-End System.

The comprehensive use of CAPS in modeling a real world system has confirmed
the essential qualities of the system while identifying several issues for future
enhancements. CAPS represents a significant opportunity for DOD to address those

software development issues resulting from shortcomings in the requirements process.

44

10.

11.

12.

LIST OF REFERENCES

Office Of the Director, Test, Systems Engineering & Evaluation, Army Tactical
Missile System (ATACMS) memorandum of Agreement (MOA) Status Report—
Information Memorandum, Washington, DC, 26 April 1995.

Office Of the Director, Test, Systems Engineering & Evaluation, 4 TACMS Draft
MOA; Comments on, Washington, DC, 9 Jun 1995.

Deputy Under Secretary of the Army (OR), Assistant Secretary of the Army ,
Director, Operational Test and Evaluation, and Director, Test, Systems
Engineering & Evaluation (USD(A&T)), Memorandum Of Agreement,
Washington, DC, 9 Jun 1995.

Holly, COL, US Army, Electronic Mail To LCDR Angrisani USN, Huntsville, AL,
Feb 1996.

Berzins & Ludqi, Software Engineering with Abstractions: An Integrated Approach
fo Software Development using Ada, Addison-Wesley Publishing Company,
Reading, MA, 1991.

US Army, Combined Arms Command, Integrated Battlefield Targeting
Architecture Handbook, Coordinating Draft, Fort Leavenworth, KS, 1 May 1994.

US Army, Combined Arms Command, Integrated Battlefield Targeting

Architecture Handbook, Architecture Annex, Final Coordinating Draft, Fort
Leavenworth, KS, 1 May 1994.

Stankovic, J. A., “Misconceptions about Real-Time Computing. A Serious
Problem for Next-Generation Systems”, Computer, Oct. 1988.

Laplante, P. A., “Real-Time Systems Design and Analysis”, Piscataway, New
Jersey: IEEE Press, 1993.

Ripps, D. L., An Implementation Guide to Real-Time Programming. Englewood
Cliffs, New Jersey: Yourdon Press Computing Series, 1989.

Gillies, D., FAQ page for the Real-Time Usenet Group, http://www.cis.ohio-
state.edu/hypertext/fag/usenet/realtime-computing/faq/faqg-doc-4.html.

Eagle, C.S., Tools For Storage And Retrieval of ADA Software Components In A -
Software Base, Monterey, CA, Naval Postgraduate School, 1995.

45

13.

14.

15.

16.

17.

18.

19.

Luqi, “Software Evolution Through Rapid Prototyping”, Piscataway, NJ, JEEE
Press, 1989.

CAPS Research Group, CAPS Home Page, http://wwwcaps.cs.nps.navy.mil.
Berzins, Lugi, Shing, Computer Aided Prototyping System (CAPS), Proceedings
of the 7" International Conference on Software Engineering and Knowledge
Engineering, Rockville, MD 22-24 June 1995.

Lugqi, “Computer-Aided Prototyping for a Command-and-Control System Using
CAPS”, IEEE Software, Jan 1992.

Lugi, Class Notes for C§4920, Naval Postgraduate School, April 1996.

M. Shing, Interview with Professor ManTak Shing by Major George Whitbeck,
USMC, Naval Postgraduate School, August 1996. '

Cordeiro, Distributed Hard Real-Time Scheduling for a Software Prototyping
Environment, Ph.D. Dissertation, Naval Postgraduate School, March 1995.

46

APPENDIX A. BASIC MODEL GRAPH AND PSDL

47

48

- do
A8j00ys

ASTHpWa auy

1sTgpwo auy

do
“uopeis
“puewwod

A)S Uoissiwa

Figure 1. Basic Model - Top Level.

49

0s

"UonR)S puBLIIO)) pasodwods(] - [SPOIN d1seg ‘7 2In3ig

1ndino LNdNI
s cpwa ady s zAeue 3l
- — ewaix fewayx:

NS 1w ey

ns pAese jabise;

s gheare ahne)

NS~ 2Aeare " jefiney

.- BASIC MODEL PSDL
TYPE target_data

SPECIFICATION
END
IMPLEMENTATION ADA target_data

END

OPERATOR asas_op
SPECIFICATION
INPUT
target_array4d_str : target_data
OUTPUT
fire_cmdl_str : target_data
END
IMPLEMENTATION ADA asas_op

END

OPERATOR atacms
SPECIFICATION
END
IMPLEMENTATION
GRAPH
VERTEX cnr_link_op

VERTEX command_station_op

VERTEX jstars_op : 200 MS

VERTEX scdl_link_op

VERTEX shooter_op

VERTEX target_emitter_op : 200 MS

EDGE emission_str
target_emitter _op ->
jstars_op

EDGE fire_cmd3_str
command_station_op ->
cnr_link_op

EDGE fire_cmdd_str
cnr_link_op ->
shooter_op

EDGE target_arrayl_str
jstars_op ->
scdl_link_op

EDGE target_array2_str
scdl_link_op ->
command_station_op

ATA STREAM

emission_str : target_data,

fire_cmd3_str : target_data,

fire_cmd4_str : target_data,

target_arrayl_str : target_data,

target_array2_str : target_data
CONTROL CONSTRAINTS

OPERATOR cnr_1link_op
TRIGGERED BY SOME

fire_cmd3_str

51

)

° OPERATOR command_station_op

OPERATOR jstars_op
PERIOD 1000 MsS

OPERATOR scdl_link_op
TRIGGERED BY SOME
target_arrayl_str

OPERATOR shooter_op
"TRIGGERED BY SOME
fire_cmd4_str

OPERATOR target_emitter_op
PERIOD 1000 MS
END

OPERATOR cnr_link_op
SPECIFICATION
INPUT
fire_cmd3_str : target_data
OUTPUT
fire_cmd4_str : target_data
END
IMPLEMENTATION ADA cnr_link_op

END

OPERATOR command_station_op
SPECIFICATION
INPUT
target_array2_str : target_data
OUTPUT :
fire_cmd3_str : target_data
END
IMPLEMENTATION
GRAPH
VERTEX asas_op

VERTEX ctoc_op

VERTEX grnd_stat_mod_op

VERTEX lanl_link_op

VERTEX lan2_link_op

EDGE fire_cmdl_str
asas_op ->
lan2_1link_op

EDGE fire_cmd2_str
lan2_link_op ->
ctoc_op

EDGE fire_cmd3_str
ctoc_op ->
EXTERNAL

EDGE target_array2_str
EXTERNAL ->
grnd_stat_mod_op

EDGE target_array3_str

grnd_stat_mod_op ->
lanl_link_op

52

EDGE target_array4_str
lanl_link_op ->
asas_op
DATA STREAM
fire_cmdl_str : target_data,
fire_cmd2_str : target_data,
target_array3_str : target_data,
target_array4_str : target_data
CONTROL CONSTRAINTS
OPERATOR asas_op
TRIGGERED BY SOME
target_arrayd_str

OPERATOR ctoc_op
TRIGGERED 'BY SOME
fire_cmd2_str

OPERATOR grnd_stat_mod_op
TRIGGERED BY SOME
target_array2_str

OPERATOR lanl_link_op
TRIGGERED BY SOME
target_array3_str

OPERATOR lan2_link_op
TRIGGERED BY SOME
fire_cmdl_str
'END

OPERATOR ctoc_op
SPECIFICATION
INPUT
fire_cmd2_str : target_data
OUTPUT
fire_cmd3_str : target_data
END
IMPLEMENTATION ADA ctoc_op

END

OPERATOR grnd_stat_mod_op
SPECIFICATION
INPUT
target_ array2_str : target_data
ouUTPUT
target_array3_str : target_data
END
IMPLEMENTATION ADA agrnd_stat_mod_op

END

OPERATOR jstars_op

SPECIFICATION
INPUT

emission_str : target_data
OUTPUT

target_arrayl_str : target_data
MAXIMUM EXECUTION TIME 200 MS
END :
IMPLEMENTATION ADA jstars_op

END

OPERATOR lanl_link_op

53

“SPECIFICATION
INPUT
target_array3_str : target_data
OUTPUT
target_array4_str : target_data
. END
IMPLEMENTATION ADA lanl_link_op

END

OPERATOR lan2_link_op
SPECIFICATION
INPUT
fire_cmdl_str : target_data
OUTPUT .
fire_cmd2_str : target'data
END
IMPLEMENTATION ADA lan2_link_op

END

OPERATOR scdl_link_op
SPECIFICATION
INPUT
target_arrayl_str : target_data
OUTPUT
target_array2_str : target_data
END
IMPLEMENTATION ADA scdl_link_op

END

OPERATOR shooter_op
SPECIFICATION
INPUT
fire_cmdd4_str : target_data
END
IMPLEMENTATION ADA shooter_op

END

OPERATOR target_emitter_op
SPECIFICATION
OUTPUT .
emission_stxr : target_data
MAXIMUM EXECUTION TIME 200 MS
END
IMPLEMENTATION ADA target_emitter_op

END

54

APPENDIX B. REFINEMENT I GRAPH, PSDL, ADA SOURCE CODE

55

56

31vis

LN L

Ns7gpwn"aay

ns 2Aeure " yakne)

25" L Aeure jofiney

45" pRwa"aly

do
“aajooys

P OET T

Figure 1. Refinement I Model - Top Level.
57

8¢

‘uoyel§ purwwo)) pasodwosa(- [PPOIA | uswisugey ‘gz 2InSiy

s pheure ey

ns gheare afineg

S

1nd1no 10dNI
— _ s™zhesre
A4S cpwd agy ns 2 166y 1870 nb
fewayx: fewiax rewax;
ST Ipwaauy
,J/.a \.\tlll.llt!.]«’lf‘.llff
s wi inG T

—
rewisrxz

Aojuow
W3Ae
“anduy

1ndino

L5716

feiayx

ns u nb

synduy
“8sooyd

iin.

Figure 3. Refinement I Model - Decomposed Gu

59

09

) pasodwosa(] - [PPOIA T IUSWAUGSY

N0 In

fNsTno i

1ndN1

AsTino |08

few:x;

Refinement I Source Code

atacms.psdl

TYPE grnd_stat_ mod_array
SPECIFICATION

END

IMPLEMENTATION ADA

grmd_stat_mod_array

END

TYPE jstars_array
SPECIFICATION
END
IMPLEMENTATION ADA jstars_array

END

TYPE my_unit
SPECIFICATION
OPERATOR pause
SPECIFICATION
OUTPUT
X : my_umit
END
END
IMPLEMENTATION ADA my_unit

END

TYPE target_data
SPECIFICATION
END
IMPLEMENTATION ADA target_data

END

TYPE target emitter_array
SPECIFICATION

END

IMPLEMENTATION ADA

target_emitter_array

END

OPERATOR asas_op
SPECIFICATION
INPUT

61

gui_in str: my unit,
target_array4_str :
grnd_stat mod_array
OUTPUT
fire_cmd]_str : target_data
MAXIMUM EXECUTION TIME
200 MS
END
IMPLEMENTATION ADA asas_op

END

OPERATOR atacms
SPECIFICATION
STATES
gui_in_str : my unit
INITIALLY
pause
END

' IMPLEMENTATION

GRAPH
VERTEX cnr_link op : 50 MS

VERTEX command_station_op
VERTEX gui_in

VERTEX gui_out

VERTEX jstars_op : 500 MS
VERTEX scdl_link op : 50 MS
VERTEX shooter_op : 50 MS

VERTEX target emitter_op : 500
MS

EDGE emission_str
target_emitter_op ->
jstars_op

EDGE fire_cmd3_str
command_station_op ->

cnr_link op

EDGE fire_cmd4_str
cnr_link op ->
shooter_op

EDGE gui_in_str
gui_in ->
command_station_op

EDGE gui_in_str
gui_in ->
target emitter_op

EDGE gui_in_str
gui_in ->
jstars_op

EDGE gui_out_str
shooter_op ->
gui_out

EDGE target_arrayl_str
jstars_op ->
scdl_link op

EDGE target_array2_str
scdl_link_op ->
command_station_op

DATA STREAM
emission_str : target_emitter_array,
fire_cmd3_str ; target_data,
fire_cmd4_str : target_data,
gui_out_str : target_data,
target_arrayl_str : jstars_array,
target_array2_str : jstars_array
CONTROL CONSTRAINTS

OPERATOR cnr_link_op
TRIGGERED BY SOME

fire_cmd3_str

OPERATOR command_station_op

OPERATOR gui_in

OPERATOR gui_out

OPERATOR jstars_op
TRIGGERED IF

gui_in_str /= my_unit.pause
PERIOD 8000 MS

62

OPERATOR scdl_link op
TRIGGERED BY SOME
target arrayl_str

OPERATOR shooter_op
TRIGGERED BY SOME
fire_cmd4_str

OPERATOR target_emitter_op
TRIGGERED IF
gui_in_str /= my_unit.pause
PERIOD 16000 MS
END

OPERATOR choose_inputs
SPECIFICATION
OUTPUT :
i_in_str : my unit

MAXTIMUM EXECUTION TIME
200 MS
END
IMPLEMENTATION ADA
choose_inputs

END

OPERATOR cmds_out
SPECIFICATION
INPUT '
gui_out_str : target data
END
IMPLEMENTATION ADA cmds_out

END

OPERATOR cnr_link op
SPECIFICATION
INPUT
fire_cmd3_str : target_data
OUTPUT
fire_cmd4_str : target_data
MAXIMUM EXECUTION TIME 50
MS
END
IMPLEMENTATION ADA
cnr_link_op

END

OPERATOR command_station_op

SPECIFICATION
INPUT
gui_in_str : my unit,
target_array?_str : jstars_array
OUTPUT
fire_cmd3 str : target_data
END
IMPLEMENTATION
GRAPH
VERTEX asas_op : 200 MS

VERTEX ctoc_op : 50 MS

VERTEX grnd_stat mod_op : 50 MS
VERTEX lanl_link op : 50 MS
VERTEX lan2_link_op : 50 MS

EDGE fire_cmd1_str
asas_op ->
lan2_link_op

EDGE fire_cmd2_str
lan2 link op ->
ctoc_op

EDGE fire_cmd3_str
ctoc_op =>
EXTERNAL

EDGE gui_in_str
EXTERNAL ->
asas op

EDGE target_array2_str : 5000 MS
EXTERNAL ->
grnd_stat_mod_op

EDGE target_array3_str
grnd_stat_mod_op ->
lanl_link op

EDGE target_array4_str
lanl_link op ->
asas_op
DATA STREAM
fire_cmdl_str : target_data,
fire_cmd2_str : target data,

target array3_str: grnd_stat_mod_array,
target_array4_str: grnd_stat_mod_array

CONTROL CONSTRAINTS
OPERATOR asas_op
TRIGGERED IF
gui_in_str /= my_unit.pause
PERIOD 4000 MS

OPERATOR ctoc_op
TRIGGERED BY SOME
fire_cmd2_str

OPERATOR grnd_stat_mod_op
TRIGGERED BY SOME
target_array2_str
MAXIMUM RESPONSE TIME
5050 MS

OPERATOR lanl_link op
TRIGGERED BY SOME
target_array3_str

OPERATOR lan2_link_op
TRIGGERED BY SOME
fire_cmdl_str

" END

OPERATOR ctoc_op
SPECIFICATION
INPUT
fire_cmd2 str : target_data
OUTPUT
fire_cmd3_str : target_data
MAXIMUM EXECUTION TIME 50
MS
END
IMPLEMENTATION ADA ctoc_op

END

OPERATOR grnd_stat mod_op
SPECIFICATION
INPUT
target array2_str : jstars_array
OUTPUT
target array3_str:
grnd_stat_mod_array
MAXIMUM EXECUTION TIME 50
MS
END
IMPLEMENTATION ADA
grnd_stat_mod_op

END

OPERATOR gui_in
SPECIFICATION
OUTPUT
gui_in_str : my unit
END
IMPLEMENTATION
GRAPH
VERTEX choose_inputs : 200 MS

VERTEX gui_input_event_monitor : 200 MS

EDGE gui_in_str
choose_inputs ->
EXTERNAL

CONTROL CONSTRAINTS

OPERATOR choose_inputs

PERIOD 2000 MS

OPERATOR gui_input_event_monitor
END

OPERATOR gui_input_event_monitor
SPECIFICATION
MAXIMUM EXECUTION TIME 200 MS
END
IMPLEMENTATION ADA
gui_input_event_monitor

END

OPERATOR gui_out
SPECIFICATION
INPUT
gui_out_str : target data
END
IMPLEMENTATION
GRAPH
VERTEX cmds_out

EDGE gui_out_str
EXTERNAL ->
cmds_out

CONTROL CONSTRAINTS

OPERATOR cmds_out

TRIGGERED BY SOME
gui_out_str
END

OPERATOR jstars_op

64

SPECIFICATION
INPUT
emission_str : target_emitter_array,
gui_in_str : my unit
OUTPUT
target_arrayl str: jstars_array
MAXIMUM EXECUTION TIME
500 MS
END
IMPLEMENTATION ADA jstars_op

END

OPERATOR lanl_link op
SPECIFICATION
INPUT
target array3_str:
grnd_stat mod_array
OUTPUT
target_array4_str:
grnd_stat_mod_array
MAXIMUM EXECUTION TIME 50
MS
END
IMPLEMENTATION ADA

_lanl_link op

END .

OPERATOR lan2_link_op
SPECIFICATION
INPUT
fire_cmdl_str : target data
OUTPUT
fire_cmd?2_str : target_data
MAXIMUM EXECUTION TIME 50
MS
END
IMPLEMENTATION ADA
lan2_link op

END

OPERATOR scd!_link op
SPECIFICATION
INPUT
target arrayl_str : jstars_array
OUTPUT
target_array2_str : jstars_array
MAXIMUM EXECUTION TIME 50
MS

END
IMPLEMENTATION ADA scdl_link_op

END

OPERATOR shooter_op
SPECIFICATION
INPUT
fire_cmd4_str : target_data
OUTPUT
gui_out_str : target data
MAXIMUM EXECUTION TIME 50 MS
END
IMPLEMENTATION ADA shooter_op

END

OPERATOR target_emitter_op
SPECIFICATION
INPUT
i_in_str : my_unit
OUTPUT :
emission_str : target emitter_array

MAXIMUM EXECUTION TIME 500 MS

END

IMPLEMENTATION ADA target_emitter_op

END

65

atacms.a

package ATACMS_EXCEPTIONS is

- PSDL exception type declaration

type PSDL_EXCEPTION is (UNDECLARED_ADA_EXCEPTION);
end ATACMS_EXCEPTIONS;

package ATACMS_INSTANTIATIONS is
- Ada Generic package instantiations

end ATACMS_INSTANTIATIONS;

with PSDL,_TIMERS;
package ATACMS_TIMERS is
— Timer instantiations
end ATACMS_TIMERS;

— with/use clauses for atomic type packages
with GRND_STAT_MOD_ARRAY_PKG; use GRND_STAT MOD_ARRAY_PKG;
with JSTARS_ARRAY_PKG; use JSTARS_ARRAY PKG;
with MY | UNIT PKG; use MY_UNIT_PKG;
with TARGET DATA PKG; use TARGET ' DATA _PKG;
with TARGET_EMITTER_ARRAY_PKG; use TARGET EMITTER_ARRAY PKG;
— with/use clauses for generated packag&s
with ATACMS_EXCEPTIONS; use ATACMS_EXCEPTIONS;
with ATACMS_INSTANTIATIONS; use ATACMS_INSTANTIATIONS;
— with/use clauses for CAPS library packages.
with PSDL._STREAMS; use PSDL_STREAMS;
package ATACMS_STREAMS is
- Local stream instantiations

package DS_EMISSION_STR_JSTARS_OP is new
PSDL_STREAMS.SAMPLED, BUFFER(T ARGET_EMITTER_ARRAY),

package DS_FIRE_CMD3_STR_CNR_LINK_OP is new
PSDL_STREAMS.SAMPLED_BUFFER(TARGET DATAY);

package DS_FIRE_CMD4_STR_SHOOTER_OP is new
PSDL STREAMS.SAMPLED BUFFER(TARGET _DATA);

package DS_GUI_OUT_STR_CMDS_OUT is new
PSDL_ STREAMS.SAMPLED BUFFER(TARGET _DATA);

package DS_TARGET_ARRAYI_STR_SCDL_LINK_OP isnew
PSDL_STREAMS.SAMPLED_BUFFER(JSTARS ARRAY);

package DS_TARGET_ARRAY2 STR_GRND_STAT MOD_OP is new
PSDL STREAMS.SAMPLED, BUFFER(JSTARS ARRAY)

package DS_FIRE_CMD1_STR_LAN2_LINK_OP is new
PSDL_STREAMS.SAMPLED _BUFFER(TARGET " DATA);

package DS_FIR.E_CMDZ_STR_CTOC__OP is new
PSDL_STREAMS.SAMPLED_BUFFER(TARGET DATA);

package DS_TARGET_ARRAY3_STR_LAN1_LINK_OP is new
PSDL,_STREAMS. SAMPLED, BUFFER(GRND STAT MOD_ARRAY),

package DS_TARGET ARRAY4 STR_ASAS OPisnew
PSDL_STREAMS.SAMPLED_BUFFER(GRND STAT_MOD_ARRAY);,

- State stream instantiations

66

package DS_GUI_IN_STR_ASAS OP isnew
PSDL_STREAMS.STATE_VARIABLE(MY_UNIT_PKG.MY_UNIT, PAUSE);

package DS_GUI_IN_STR_JSTARS_OP is new
PSDL_STREAMS.STATE_VARIABLE(MY_UNIT_PKG.MY_UNIT, PAUSE);

package DS_GUI_IN_STR_TARGET_EMITTER_OP is new
PSDL S'I'REAMS STATE ._VARIABLE(MY_UNIT_PKG.MY_UNIT, PAUSE);

end ATACMS_STREAMS;

package ATACMS_DRIVERS is

procedure CNR_LINK_OP DRIVER;
procedure JSTARS_OP_DRIVER;

procedure SCDL,_LINK_OP_DRIVER;
procedure SHOOTER_OP_DRIVER;
procedure TARGET_EMITTER_OP_DRIVER;
procedure ASAS_OP_DRIVER;

procedure CTOC_OP_DRIVER;

procedure GRND_STAT _MOD. _OP_DRIVER;
procedure LAN1_LINK_OP ' DRIVER;
procedureLANZ LINK_OP_DRIVER;
procedure CHOOSE_INPUTS_DRIVER;
procedure GUI_INPUT_EVENT_MONITOR_DRIVER;
procedure CMDS_OUT_DRIVER;

end ATACMS_DRIVERS;

- with/use clauses for atomic components.
with GRND_STAT_MOD_ARRAY_PKG; use GRND_STAT MOD_ARRAY PKG;
with JSTARS _ARRAY_PKG; use JSTARS _ARRAY PKG
with MY_UNIT_PKG; use MY’ _UNIT PKG
wnhTARGET DATA __PKG; use TARGET, " DATA _PKG;
with TARGET _ EMI'I'I‘ER ARRAY_PKG; use TARGET _EMITTER_ARRAY_PKG;
with ASAS_OP_PKG; useASAS OP_PKG;
thhCHOOSE INPUTS_PKG; useCHOOSE INPUTS_PKG;
with CMDS_OUT_PKG; use CMDS_OUT_PKG;
with CNR_LINK_OP_PKG; use CNR_LINK_OP_PKG;
with CTOC_OP_PKG; use CTOC_OP_PKG;
with GRND_STAT_MOD_OP_PKG; use GRND_STAT _MOD_OP_PKG;
with GUI_INPUT_EVENT. " MONITOR_PKG; use GUI_INPUT_EVENT " MONITOR_PKG;
with JSTARS_OP_PKG; use JSTARS _OP_PKG;
with LAN1_LINK_t OP_PKG; use LAN1 _LINK OP_PKG;
with LAN2_LINK_OP] _PKG; use LAN2_LINK_OP] ' PKG;
with SCDL_LINK_OP_PKG; use SCDL_LINK_OP_PKG;
with SHOOTER_OP_PKG; use SHOOTER_OP_PKG;
with TARGET_EMITTER _OP_PKG; useTARGET_EMI’I'I‘ER__OP_PKG;

-~ with/use clauses for generated packages.
with ATACMS_EXCEPTIONS; use ATACMS_EXCEPTIONS;
with ATACMS_STREAMS; use ATACMS_STREAMS;
with ATACMS_TIMERS; use ATACMS _TIMERS;
with ATACMS _ _INSTANTIATIONS; use ATACMS INSTANTIATIONS

- with/use clauses for CAPS library packages.
with DS_DEBUG_PKG; use DS_DEBUG_PKG;
with PSDL_STREAMS; use PSDL_STREAMS;
with PSDL._TIMERS;

package body ATACMS _DRIVERS is

procedure CNR_LINK_OP_DRIVER is
LV_FIRE_CMD3 S'I'R TARGET _DATA_PKG.TARGET_DATA;
LV _FIRE_| _CMD4_STR: TARGET_DATA_PKG.TARGET ' DATA;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION ID: PSDL_EXCEPTION;
begin
- Data trigger checks.
ifnot (DS_FIRE_CMD3_STR_CNR_LINK_OP.NEW_DATA) then
retumn;
end if;

67

~ Data stream reads.
begin
DS_FIRE_CMD3_STR_CNR_LINK_OP.BUFFER.READ(LV_FIRE_CMD3_STR),
exception
when BUFFER_UNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("FIRE_CMD3_STR_CNR_LINK_OP", "CNR_LINK_OP");
end;

- Execution trigger condition check.
if True then
begin
CNR_LINK_OP(
FIRE_CMD3_STR =>LV_FIRE_CMD3_STR,
FIRE_CMD4_STR =>LV FIRE CMD4_STR);
exception
when others =>
DS_DEBUG.UNDECLARED_EXCEPTION("CNR_LINK_OP"),
EXCEPTION HAS_OCCURRED :=true;
EXCEPTION ID := UNDECLARED_ADA_EXCEPTION;
end;
else return;
end if;

— Exception Constraint translations.
— Other constraint option translations.

—Unconditional output translations.
if not EXCEPTION_HAS OCCURRED then
begin
DS_FIRE_CMD4_STR_SHOOTER_OP. BUFFER.WRITE(LV FIRE_CMD4_STR);
exception
when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER_OVERFLOW("FIRE_CMD4_STR_SHOOTER_OP", "CNR_LINK _OP"),
end;
end if,

- PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(
"CNR . LINK_OP",
PSDL] EXCEP’I'ION'IMAGE(EXCEPTION 1D));
end if;
end CNR_LINK_OP_DRIVER;

procedure JSTARS OP_DRIVER is

LV_EMISSION_STR : TARGET_EMITTER_ARRAY PKG.TARGET EMITTER_ARRAY;
LV_GUL_IN_STR : MY_UNIT_PKG.MY_UNIT;

Lv’ TARGET ARRAY1 _STR: JSTARS_ARRAY PKG.JSTARS_ARRAY;

EXCEPTION_HAS OCCURRED: BOOLEAN =FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;
begin

— Data trigger checks.

— Data stream reads.
begin
DS_EMISSION_STR_JSTARS_OP.BUFFER.READ(LV_EMISSION STR);
exception
when BUFFER_UNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("EMISSION_STR_JSTARS_OP", "JSTARS_OP");
end;
begin
DS_GUI_IN_STR_JSTARS_OP.BUFFER.READ(LV_GUI_IN_STR);
exception
when BUFFER_UNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("GUI_IN_STR_JSTARS_OP", "JSTARS OP");
end;

68

~ Execution trigger condition check. }
if (LV_GUI_IN_STR /= MY_UNIT_PKG.PAUSE) then
begin
JSTARS_OP(
EMISSION_STR =>LV_EMISSION_STR,
GUL IN_STR =>LV_GUI_IN_STR,
TARGET_ARRAY1_STR =>LV_TARGET_ARRAY1_STR);
exception
when others =>
DS_DEBUG.UNDECLARED_EXCEPTION("JSTARS_OP");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;,
end;
else return;
end if}

~ Exception Constraint translations.
~ Other constraint option translations.

~Unconditional output translations.
if not EXCEPTION_HAS_OCCURRED then
begin :
DS_TARGET_ARRAY1_STR_SCDL _LINK_OP.BUFFER WRITE(LV_TARGET_ARRAY1_STR);
exception
when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER_OVERFLOW("TARGET_ARRAY1_STR_SCDL_LINK_OP", "JSTARS_OP");
end,
end if;

- PSDL Exception handler.
if EXCEPTION_HAS OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(
"JSTARS_OP",
PSDL_EXCEPTIONIMAGE(EXCEPTION ID));
end if;
end JSTARS_OP_DRIVER;

procedure SCDL_LINK_OP_DRIVER is
LV_TARGET_ARRAY1_STR:JSTARS_ARRAY PKG.JSTARS_ARRAY;
LV_TARGET_ARRAY?_STR:JSTARS_ARRAY PKG.JSTARS_ARRAY:

EXCEPTION_HAS OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;
begin
— Data trigger checks.
if not (DS_TARGET_ARRAY1_STR_SCDL_LINK_OP.NEW_DATA)then
return; ’
end if;

- Data stream reads.
begin
DS_TARGET_ARRAY1 STR SCDL_LINK_OP.BUFFERREAD(LV_TARGET ARRAY1 STR);
exception
when BUFFER_UNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("TARGET_ARRAY1 STR_SCDL LINK OP","SCDL_LINK_OP");
end;

- Execution trigger condition check.
if True then
begin
SCDL_LINK_OP(
TARGET_ARRAY1_STR =>LV_TARGET_ARRAY1 STR,
TARGET_ARRAY2_STR =>LV_TARGET_ARRAY2_ STR),

69

exception
when others =>
DS_DEBUG.UNDECLARED _EXCEPTION("SCDL_LINK_OP");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION] _ID := UNDECLARED_ADA_EXCEPTION;
end;
else retumn;
end if,

- Exception Constraint translations.
- Other constraint option translations.

~Unconditional output translations.
if not EXCEPTION_HAS_OCCURRED then
begin
DS_TARGET_ARRAY2 STR_GRND_STAT_MOD_OP. BUFFER WRITE(LV_TARGET ARRAY2_STR);
exception
when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER_OVERFLOW("TARGET_ARRAY2_STR_GRND _STAT_MOD_OP", "SCDL_LINK_OP");
end;
end if;

- PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(
"SCDL_LINK_OP",
PSDL_EXCEPTIONTMAGE(EXCEPTION_ID));
end if;
end SCDL_LINK_OP_DRIVER,;

procedure SHOOTER_OP_DRIVER is
LV_FIRE_CMD4 STR TARGET_DATA _PKG.TARGET DATA;
LV_GuI OUT STR: TARGET " DATA_PKG.TARGET _DATA;

EXCEPTION_HAS OCCURRED: BOOLEAN := FALSE;
EXCEPTION] _ID: PSDL_EXCEPTION;
begin
- Data trigger checks.
ifnot (DS_FIRE_CMD4_STR_SHOOTER_OP.NEW_DATA) then
retumn; ’
end if}

— Data stream reads.
begin
DS_FIRE_CMD4_STR_SHOOTER_OP. BUFFER.READ(LV_FIRE_CMD4_STR),
exception
when BUFFER_UNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("FIRE_CMD4 _STR_SHOOTER_OP", "SHOOTER_OP"),
end;

— Execution trigger condition check.
if True then
begin
SHOOTER_OP(
FIRE_CMD4 _STR =>LV FIRE ,_CMD4_STR,
GUI_OUT _ STR=>LV GUI [OUT_STR);
exception
when others =>
DS_DEBUG.UNDECLARED EXCEPTION(“SHOOTER _OP");,
EXCEPTION_HAS_OCCURRED :=true;
EXCEPTION_ID =UNDECLARED_ADA_EXCEPTION;
end;
else return;
end if}

70

~ Exception Constraint translations.
— Other constraint option translations.

~Unconditional output translations.
ifnot EXCEPTION_HAS_OCCURRED then
begin
DS_GUI_OUT_STR _CMDS_OUT. BUFFER.WRITE(LV GUI_OUT_STR);,
exception
when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER _ OVERFLOW("GUL_OUT_STR_CMDS_OUT", "SHOOTER_OP");
end;
end if;

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED) EXCEPTION(
"SHOOTER . OP",
PSDL, EXCEP'I'ION‘IMAGE(EXCEPTION _ID));
end if}
end SHOOTER_OP_DRIVER;

procedure TARGET EMITTER_OP_DRIVER is
LV_GUI_IN_STR: MYUNITPKGMYUNI’I‘
LV_ EMISSION STR : TARGET _EMITTER_ARRAY PKG.TARGET EMITTER_ARRAY;

EXCEPTION_HAS_OCCURRED: BOOLEAN :=FALSE;
EXCEPTION_ID: PSDL, , EXCEPTION,
begin

— Data trigger checks.

— Data stream reads.
begin
DS_GUI_IN_STR_TARGET_EMITTER_OP.BUFFER READ(LV _ GUI_IN_STR);
exception
when BUFFER_UNDERFLOW =>
DS_DEBUG. BUFFER . UNDERFLOW("GUI_IN_STR_TARGET EMITTER_OP", "TARGET " EMITTER_OP");
end;

- Execution trigger condition check.
if (LV_GUI_IN_STR /=MY_UNIT_PKG.PAUSE) then
begin
TARGET_EMITTER_OP(
GUIL_IN_ STR=>LV _GUI_IN_STR,
EMISSION STR=>LV EMISSION _STR);
exception
when others =>
DS_DEBUG.UNDECLARED_EXCEPTION("TARGET_EMITTER_OP");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;
end;
else return;
end if;

- Exception Constraint translations.
- Other constraint option translations.

~Unconditional output translations.
ifnot EXCEPTION_HAS_OCCURRED then
begin
DS_EMISSION_STR_JSTARS_OP.BUFFER.WRITE(LV_EMISSION STR);
exception
when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER_OVERFLOW("EMISSION STR_JSTARS_OP", "TARGET EMITTER OP")
end;
end if}

71

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED _EXCEPTION(
"TARGET _EMITTER_OP",
PSDL, EXCEPTION'IMAGE(EXCEPTION _ID));
end if}
end TARGET EMITTER _OP_DRIVER;

procedure ASAS OP_DRIVER is

LV_GUI_IN_STR : MY_UNIT_PKG.MY_UNIT;

LV TARGET ARRAY4 STR : GRND_STAT MOD_ARRAY_PKG.GRND | STAT MOD_ARRAY;
LV_FIRE_CMD1 _STR : TARGET | DATA_PKG.TARGET " DATA;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;
begin
- Data trigger checks.

~ Data stream reads.
begin
DS_GUI_IN_STR_ASAS_OP.BUFFER.READ(LV_GUI_IN_STR);
exception
when BUFFER_UNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("GUI_IN_STR_ASAS_OP", "ASAS_OP");
end;
begin
DS_TARGET_ARRAY4_STR_ASAS_OP.BUFFERREAD(LV_TARGET ARRAY4 STR);
exception
when BUFFER_UNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("TARGET ARRAY4 STR_ASAS OP", "ASAS_OP");
end;

— Execution trigger condition check.
if (LV_GUI_IN_STR /=MY_UNIT_PKG.PAUSE) then
begin
ASAS OP(
GUI_IN_STR =>LV_GUI_IN_STR,
TARGET_ARRAY4_STR =>LV_TARGET_ARRAY4 STR,
FIRE_CMD1_STR =>LV_FIRE_CMD1_STR);
exception
when others =>
DS_DEBUG.UNDECLARED_EXCEPTION("ASAS_OP");
EXCEPTION HAS_OCCURRED :=true;
EXCEPTION_ID : =UNDECLARED_ADA_EXCEPTION;
end;
else return;
end if;

— Exception Constraint translations.
— Other constraint option translations.

~Unconditional output translations.
if not EXCEPTION_HAS_OCCURRED then
begin
DS_FIRE CMD1_STR_LAN2_LINK_OP.BUFFER.WRITE(LV_FIRE CMD1_STR);
exception
when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER_OVERFLOW("FIRE_CMD1_STR_LAN2_LINK_OP","ASAS_OP");
end;
end if;

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(
"ASAS_OP",
PSDL_EXCEPTIONIMAGE(EXCEPTION_ID));
end if}

72

end ASAS_OP_DRIVER,;

procedure CTOC_OP_DRIVER is
LV_FIRE_CMD2_STR : TARGET DATA_PKG.TARGET DATA;
LV_FIRE_CMD3_STR : TARGET DATA_PKG.TARGET DATA:

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;,
begin
— Data trigger checks.
ifnot (DS_FIRE_CMD2_STR_CTOC_OP.NEW_DATA) then
return;
end if;

-- Data stream reads.
begin
DS_FIRE_CMD2_STR_CTOC_OP.BUFFER.READ(LV_FIRE_CMD2_STR);
exception
when BUFFER_UNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("FIRE_CMD2_STR_CTOC_OP", "CTOC_OP");
end;

~ Execution trigger condition check.
if True then
begin
CTOC_OF(
FIRE_CMD2_STR =>LV_FIRE_CMD2_STR,
FIRE_CMD3_STR =>LV_FIRE_CMD3_STR);
exception
when others =>
DS_DEBUG.UNDECLARED_EXCEPTION("CTOC_OP");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED ADA _EXCEPTION;
end;
else retumn;
end if}

—~ Exception Constraint translations.
- Other constraint option translations.

—Unconditional output translations.
if not EXCEPTION_HAS OCCURRED then
begin
DS_FIRE_CMD3_STR_CNR_LINK_OP.BUFFER.WRITE(LV_FIRE_CMD3_STR);
exception
when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER_OVERFLOW("FIRE_CMD3_STR_CNR_LINK_OP", "CTOC_OP"),
end,; ’
end if,

- PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(
"CTOC_OP",
PSDL_EXCEPTIONTMAGE(EXCEPTION_ID));
end if;
end CTOC_OP_DRIVER;

procedure GRND_STAT MOD_OP_DRIVER is
LV_TARGET_ARRAY?2_STR :JSTARS_ARRAY_PKG.JSTARS_ARRAY:;
LV_TARGET_ARRAY3_STR : GRND_STAT_MOD_ARRAY_PKG.GRND_STAT MOD_ARRAY;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;

EXCEPTION_ID: PSDL_EXCEPTION;
begin

73

— Data trigger checks.
if not (DS_TARGET_ARRAY2_STR_GRND_STAT _MOD_OP.NEW_DATA) then
returm;
end if]

— Data stream reads.
begin
DS_TARGET_ARRAY2_STR_GRND_STAT MOD_OP.BUFFER.READ(LV_TARGET ARRAY2_STR);
exception /
when BUFFER_UNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("TARGET_ARRAY2_STR_GRND_STAT MOD_OP", "GRND_STAT MOD_OP"),
end;

~ Execution trigger condition check.
if True then
begin
GRND_STAT_MOD_OP(
TARGET_ARRAY2 STR =>LV_TARGET_ARRAY2 STR,
TARGET_ARRAY3_STR =>LV_TARGET ARRAY3_STR);
exception
when others =>
DS_DEBUG.UNDECLARED_EXCEPTION("GRND_STAT_MOD_OP");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;
end;
else return;
end if;

— Exception Constraint translations.
— Other constraint option translations.

—Unconditional output translations.
if not EXCEPTION_HAS_OCCURRED then
begin
DS_TARGET_ARRAY3_STR_LANI1_LINK_OP.BUFFER WRITE(LV_TARGET ARRAY3_STR);
exception
when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER_OVERFLOW("TARGET_ARRAY3_STR_LAN1_LINK_OP", "GRND_STAT MOD_OP");
end;
end if}

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(
"GRND_STAT_MOD_OP",
PSDL_EXCEPTIONIMAGE(EXCEPTION_ID));
end if; ’
end GRND_STAT MOD_OP_DRIVER;

procedure LAN1_LINK_OP_DRIVER is
LV_TARGET_ARRAY3_STR:GRND_STAT _MOD_ARRAY_PKG.GRND_STAT MOD_ARRAY;
LV_TARGET_ARRAY4_STR : GRND_STAT_MOD_ARRAY PKG.GRND_STAT MOD_ARRAY:

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;
begin
- Data trigger checks.
ifnot (DS_TARGET_ARRAY3_STR_LAN1!_LINK OP.NEW_DATA) then
return;
end if}

74

- Data stream reads.
begin
DS_TARGET_ARRAY3_STR_LAN1_LINK OP.BUFFER.READ(LV_TARGET ARRAY3 STR);
exception
when BUFFER_UNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("TARGET_ARRAY3_STR_LANI_LINK_OP", "LAN1_LINK_OP"),
end;

- Execution trigger condition check.
if True then
begin
LANI_LINK_OP(
TARGET_ARRAY3 STR =>LV_TARGET ARRAY3 STR,
TARGET_ARRAY4_STR =>LV_TARGET ARRAY4 STR);
exception
when others =>
DS_DEBUG.UNDECLARED_EXCEPTION("LAN1_LINK_OP"),
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;
end;
else return;
end if}

— Exception Constraint translations.
— Other constraint option translations.

—~Unconditional output translations.
ifnot EXCEPTION_HAS OCCURRED then
begin .
DS_TARGET_ARRAY4_STR_ASAS_OP.BUFFER.WRITE(LV_TARGET ARRAY4 STR);
exception
when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER_OVERFLOW("TARGET_ARRAY4_STR_ASAS_OP", "LAN1_LINK_OP");
end;
end if,

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED EXCEPTION(
"LANI_LINK_OP",
PSDL_EXCEPTIONTMAGE(EXCEPTION_ID));
end if;
end LAN1_LINK_OP_DRIVER;

procedure LAN2_LINK_OP_DRIVER is
LV_FIRE_CMDI1_STR : TARGET_DATA_PKG.TARGET_DATA;
LV_FIRE_CMD2_STR: TARGET DATA_PKG.TARGET DATA;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;
begin
- Data trigger checks.
if not (DS_FIRE_CMDI1_STR_LAN2_LINK_OP.NEW_DATA) then
return;
end if,

— Data stream reads.
begin :
DS_FIRE CMD1_STR_LAN2 LINK OP.BUFFER.READ(LV_FIRE_CMD!_ STR);
exception
when BUFFER_UNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("FIRE_CMDI1_STR_LAN2_LINK_OP", "LAN2_LINK_OP");
end;

75

- Execution trigger condition check.
if True then
begin
LAN2_LINK_OP(
FIRE_CMD1_STR=>LV_FIRE_CMDI_STR,
FIRE_CMD2_STR=>LV_FIRE_CMD2_STR),
exception
when others =>
DS_DEBUG.UNDECLARED_EXCEPTION("LAN2_LINK_OP");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID :=UNDECLARED_ADA_EXCEPTION;
end;
else return;
end if,

- Exception Constraint translations.
= Other constraint option translations.

~Unconditional output translations.
if not EXCEPTION_HAS OCCURRED then
begin
DS_FIRE_CMD2_STR_CTOC_OP.BUFFER.WRITE(LV_FIRE_CMD2_STR},
exception
when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER_OVERFLOW("FIRE_CMD2_STR_CTOC_OP", "LAN2_LINK_OP"),
end;
end if;

- PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(
"LAN2_LINK_OP",
PSDL_EXCEPTIONTMAGE(EXCEPTION_ID));
end if;
end LAN2_LINK_OP_DRIVER;

procedure CHOOSE_INPUTS_DRIVER is
LV_GUIL_IN_STR : MY_UNIT_PKG.MY_UNIT;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL._EXCEPTION;
begin
— Data trigger checks.

— Data stream reads.

— Execution trigger condition check.
if True then
begin
CHOOSE_INPUTS(
GUI_IN_STR =>LV_GUI_IN_STR);
exception
when others =>
DS_DEBUG.UNDECLARED_EXCEPTION("CHOOSE_INPUTS");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID :=UNDECLARED ADA_EXCEPTION;
end;
else return;
end if

- Exception Constraint translations.

= Other constraint option translations.

76

~Unconditional output translations.
if not EXCEPTION_HAS_OCCURRED then
begin
DS_GUIL IN_STR_ASAS_OP BUFFER.WRITE(LV_GUI_IN_STR);
exception
when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER. OVERFLOW(“GUI IN_STR_ASAS_OP", "CHOOSE_INPUTS");
end;
begin
DS_GUI_IN_STR_JSTARS_OP.BUFFER WRITE(LV_GUI_IN_STR);
exception
when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER_OVERFLOW("GUI_IN_STR_JSTARS_OP", "CHOOSE_INPUTS");
end;
begin
DS_GUI_IN_STR_TARGET_EMITTER_OP.BUFFER WRITE(LV_GUI_IN_STR);
exception
when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER . OVERFLOW("GUI_IN_STR_TARGET_EMITTER_OP", "CHOOSE ,_INPUTS");
end;
end if}

~ PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(
"CHOOSE_INPUTS",
PSDL_EXCEPTIONTMAGE(EXCEPTION_ID)),
end if}
end CHOOSE_INPUTS_DRIVER;

procedure GUI_INPUT_EVENT_MONITOR,_DRIVER is

EXCEPTION_HAS_OCCURRED: BOOLEAN :=FALSE;
EXCEPTION ID: PSDL, , EXCEPTION;,
begin

~ Data trigger checks.

- Data stream reads.

~ Execution trigger condition check.
if True then
begin
GUIL_INPUT_EVENT MONITOR;
exception
when others =>
DS_DEBUG.UNDECLARED EXCEPTION("GUI INPUT_EVENT_MONITOR");
EXCEPTION HAS_OCCURRED := true;
EXCEPTION_ID := =UNDECLARED_ADA. EXCEPTION;
end;
else return;
end if,

— Exception Constraint translations.
— Other constraint option translations.
--Unconditional output translations.

— PSDL Exception handler.
if EXCEPTION_HAS OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(
"GUI_INPUT_EVENT_MONITOR",
PSDL EXCEPTION'IMAGE(EXCEPTION _ID));
end if}
end GUI_INPUT_EVENT _MONITOR_DRIVER;

77

procedure CMDS_OUT_DRIVER is
LV_GUI_OUT_STR : TARGET _DATA PKG.TARGET DATA;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;
begin
— Data trigger checks.
if not (DS_GUI_OUT_STR_CMDS_OUT.NEW_DATA) then
return;
end if,

- Data stream reads.
begin
DS_GUI_OUT_STR_CMDS_OUT.BUFFER.READ(LV_GUI_OUT_STR);
exception
when BUFFER_UNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("GUI_OUT_STR_CMDS_OUT", "CMDS_OUT");
end;

- Execution trigger condition check.
if True then
begin
CMDS_OUT(
GUI_OUT_STR=>LV_GUI_OUT_STR);
exception
when others =>
DS_DEBUG.UNDECLARED_EXCEPTION("CMDS_OUT");
EXCEPTION HAS OCCURRED := true;
EXCEPTION_ID =TUNDECLARED_ADA._EXCEPTION;
end;
else return;
end if;

— Exception Constraint translations.
~ Other constraint option translations.
—Unconditional output translations.

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(
"CMDS_OUT",
PSDL_EXCEPTIONTMAGE(EXCEPTION_ID));
end if;
end CMDS_OUT _DRIVER;
end ATACMS_DRIVERS;

package atacms DYNAMIC SCHEDULERS is
procedure START DYNAMIC SCHEDULE;
end atacms DYNAMIC _SCHEDULERS;

with atacms_DRIVERS; use atacms_DRIVERS;
with PRIORITY DEFINITIONS; use PRIORITY_DEFINITIONS;
package body atacms DYNAMIC_SCHEDULERS is

task type DYNAMIC_SCHEDULE_TYPE is

pragma priority (DYNAMIC_SCHEDULE_PRIORITY);

entry START;

end DYNAMIC_SCHEDULE_TYPE;

for DYNAMIC_SCHEDULE_TYPE'STORAGE_SIZE use 100_000;
DYNAMIC_SCHEDULE : DYNAMIC_SCHEDULE_TYPE;

task body DYNAMIC_SCHEDULE_TYPE is
begin

accept START;

loop

78

delay 5.0;
cmds_out DRIVER;
end loop;
end DYNAMIC_SCHEDULE_TYPE;

procedure START_DYNAMIC SCHEDULE is
begin

DYNAMIC_SCHEDULE.START;
end START DYNAMIC_SCHEDULE;

end atacms_DYNAMIC_SCHEDULERS;

package atacms_STATIC_SCHEDULERS is
procedure START _STATIC_SCHEDULE;
end atacms STATIC_SCHEDULERS;

with atacms_DRIVERS; use atacms_DRIVERS;

with PRIORITY_DEFINITIONS; use PRIORITY DEFINITIONS;
with PSDL,_TIMERS; use PSDL,_TIMERS;

with TEXT _IO; use TEXT IO;

package body atacms_STATIC_SCHEDULERS is

task type STATIC_SCHEDULE_TYPE is
pragma priority (STATIC_SCHEDULE_PRIORITY);
entry START;
end STATIC_SCHEDULE_TYPE;
for STATIC_SCHEDULE_TYPE'STORAGE_SIZE use 200_000;
STATIC_SCHEDULE : STATIC _SCHEDULE_TYPE;

task body STATIC_SCHEDULE_TYPE is
PERIOD : duration;
target_emitter_op_START_TIMEI1 : duration;
target emitter_op_STOP_TIMEI : duration;
jstars_opSTART_TIME?2 : duration;
jstars_op_STOP_TIME?2 : duration;
scdl_link op_START_TIMES3 : duration;
sedl_link_op_STOP_TIMES3 : duration;
gnd stat mod_op_START_TIME4 : duration;
gmd_stat_mod_op_STOP_TIME4 : duration;
lanl_link_op_START_TIMES : duration;
lan_link_op_STOP_TIMES : duration;
asas_op_START TIMES : duration;
asas_op_STOP_TIMES : duration;
choose_inputs START TIME?7 : duration;
choose_inputs STOP_TIME? : duration;
lan2_link_op_START_ TIMESR : duration;
lan2_link op_STOP_TIMES : duration;
ctoc_op START TIMES9 : duration;
ctoc_op_STOP_TIMES : duration;
cor_link_op START TIMEI1O : duration;
cnr_link_op_STOP_TIMEI0 : duration;
shooter_op_START TIMEI11 : duration;
shooter_op_STOP_TIMEI11 : duration;
gui_input_event_monitor START_TIME]12 : duration;
gui_input_event_monitor_STOP_TIME12 : duration;
scdl_link op_START TIME13 : duration;
scdl_link op_STOP_TIMEL13 : duration;
lanl_link op_START_TIME14 : duration;
lanl_link_op_STOP_TIMEI4 : duration;
choose_inputs START_TIME15 : duration;
choose_inputs_STOP_TIMELS : duration;
lan2 link_op_START TIMEIG : duration;
lan2_link_op_STOP_TIMELIS : duration;
ctoc_op_START TIMEI7 : duration;
ctoc_op_STOP_TIME17 : duration;
cnr_link op START TIMEI1S : duration;
cnr_link_op_STOP_TIMEL1S : duration;
shooter_op_START TIMEIS : duration;

79

shooter_op_STOP_TIME19 : duration;

scdl link_op_START_TIME20 : duration;
scdl_link_op_STOP_TIME?20 : duration;

gmd stat mod_op_START_TIME21 : duration;
gmd_stat_ mod_op STOP_TIME21 : duration;
lanl_link_op_START_TIME22 : duration;
lanl_link_op_STOP_TIME22 : duration;
asas_op_START_TIME23 : duration;
asas_op_STOP_TIME23 : duration;
choose_inputs START TIME?24 : duration;
choose_inputs_ STOP_TIME?24 : duration;
lan2 link op_START TIME2S : duration;
la.n2 link_op_STOP_TIME2S : duration;
ctoc__op_START__TlMEZG duration;
ctoc_op_STOP_TIME26 : duration;
cnr_link_op START_TIME27 : duration;
cnr_link_op_STOP_TIME?27 : duration;
shooter_op START_TIME2S : duration;
shooter_op STOP_TIME?2S : duration;
gui_input_event_monitor_START TIME?29 : duration;,
gui_input_event_monitor_STOP_TIME?29 : duration;
sedl_link_op_START_TIME30 : duration;
scdl link op_STOP_TIMES3O0 : duration;
lanl_hnk_op_START_TIME31 duration;
lanl_link op_STOP_TIME31 : duration;
choose_inputs START TIME32 : duration;
choose_inputs STOP_TIME32 : duration;
lan2_link_op_START_TIMES33 : duration;
lan2_link _op_STOP_TIME33 : duration;
ctoc_op_START_TIME34 : duration;
ctoc_op_STOP_TIME34 : duration;
cnr_link_op_START TIMES3S : duration;
cnr_link_op_STOP_TIMES3S : duration;
shooter_op_START TIME36 : duration;
shooter_op_STOP_TIME36 : duration;
jstars_op START_TIME37 : duration;
jstars_op_STOP_TIME37 : duration;
scdl_link op START TIME38 : duration;
sedl_link op STOP_TIMES38 : duration;
gmd_stat mod_op START TIMES39 : duration;
grnd_stat mod_op_STOP_TIMES39 : duration;
lanl_link op START TIME40 : duration;
lanl_link op STOP_TIME4O : duration;
asas_op START TIMEA41 : duration;
asas_op_STOP_TIME41 : duration;
choose_inputs START TIME4?2 : duration;
choose_inputs STOP_TIME42 : duration;
lan2_link op | START "_TIMEA43 : duration;
lan2_link_op_STOP_TIMEA3 : duration;
ctoc_op START TIMEA44 : duration;
ctoc_op_STOP T1ME44 duration;
enr_link_op_START_TIME4S : duration;
car_link_op_STOP ' TIMEA45 : duration;
shooter - op_START ' TIME46 : duration;
shooter_op_STOP_TIMEA46 : duration;
gui_input_event_monitor START TIMEA47 : duration;
gui_input_event_monitor STOP_TIME47 : duration;
scdl_link_op_START TIME48 dutatlon,
sedl | |_link_op_STOP_TIME4S : duration;
fanl_ lmk . Op_| START "_TIME49 : duration;
lanl__lmk_op_STOP_TIME49 duration;
choose_inputs_START _TIMESO : duration;
choose_inputs STOP_TIMESO : duration;
lan2_link_op_START TIMES51 : duration;
lan2_link_op_STOP _TIMES]1 : duration;
ctoc_op START TIMES2 : duration;
ctoc_op_STOP_TIMES2 : duration;
cor_link_op_START_TIMES3 : duration;
cor_link_op_STQP_TIMES3 : duration;

80

shooter_op START TIMES4 : duration;

shooter_op_STOP_TIMES54 : duration;

scdl_link_op_START TIMESS : duration;

scdl_link op_ STOP_TIMESS : duration;

gmd_stat mod_op_START_TIMES6 : duration;

gmd_stat mod_op_STOP_TIMES6 : duration;

lanl_link_op_START TIMES7 : duration;

fanl_Jink op_STOP_TIMES?7 : duration;

asas_op_START TIMESS : duration;

asas op_STOP_TIMESS : duration;

choose_inputs START TIMES9 : duration;

choose_inputs STOP_TIMES9 : duration;

lan2_link_op_START_TIME60 : duration;

lan2_link op_STOP_TIMEG6O : duration;

ctoc_op_START_TIMES61 : duration;

ctoc_op_STOP_TIMESG1 : duration;

enr_link_op START_TIMES62 : duration;

cnr_link_op_STOP_TIMES? : duration;

shooter_op_START TIMES63 : duration;

shooter_op_STOP_TIMES63 : duration;

gui_input_event monitor START TIME64 : duration;
gui_input_event monitor STOP_TIME64 : duration;

scdl_link_op_START_TIMESS : duration;

scdl link_op_STOP_TIMESS : duration;

lanl_link_op_START_TIMES66 : duration;

lanl_link_op_STOP_TIMEG66 : duration;

choose_inputs START TIMEG67 : duration;

choose_inputs_ STOP_TIMEG7 : duration;

lan2_link op_START_TIMES6S : duration;

lan2_link_op_STOP_TIMES6S : duration;

ctoc_op_START TIMESGS : duration;

ctoc_op STOP_TIMES9 : duration;

cor_link_op START _TIME70 : duration;

cnr_link op_STOP_TIME?70 : duration;

shooter_op_START_TIMET71 : duration;

shooter_op_STOP_TIME71 : duration;

schedule_timer : TIMER := NEW_TIMER;
begin

accept START;

PERIOD := TARGET_TO_HOST(duration(1.60000000000000E+01)); .
target_emitter_op START_TIMEL := TARGET_TO_HOST(duration(0.00000000000000E+00));
target_emitter_op_STOP_TIME1 := TARGET_TO_HOST{(duration(5.00000000000000E-01));
jstars_op_START_TIME2 := TARGET_TO_HOST(duration(5.00000000000000E-01));
jstars_op_STOP_TIME2 := TARGET_TO_HOST(duration(1.00000000000000E-+00));
sedl_link_op_START_TIMES := TARGET_TO_HOST(duration(1.00000000000000E+00));
sedl_link_op_STOP_TIME3 := TARGET_TO_HOST(duration(1.05000000000000E+00));
gmd_stat mod op _START_TIME4 := TARGET_TO_HOST(duration(1.05000000000000E+00));
gmd_stat mod_op_STOP_TIME4 := TARGET_TO_HOST(duration(1.10000000000000E+00}));
lan]_link_op_START_TIMES := TARGET_TO_HOST(duration(1.10000000000000E-+00));
lan}_link_op_STOP_TIMES := TARGET_TO_HOST(duration(1.15000000000000E+00));
asas_op START_TIMEG := TARGET_TO_HOST(duration(1.15000000000000E-+00));
asas_op_STOP_TIMES := TARGET_TO_HOST(duration(1.35000000000000E+00));
choose_inputs START_TIME7 := TARGET_TO_HOST(duration(1.35000000000000E+00));
choose_inputs STOP_TIME? := TARGET_TO_HOST(duration(1.55000000000000E+00));
lan2_link_op_START_TIMES := TARGET_TO_HOST(duration(1.55000000000000E-+00)),
lan2_link_op_STOP_TIMES := TARGET_TO_HOST(duration(1.60000000000000E~+00));
ctoc_op START_TIME9 := TARGET_TO_HOST(duration(1.60000000000000E+00));
ctoc_op_STOP_TIMES := TARGET_TO_HOST(duration(1.65000000000000E-+00));
cnr_link_op_START_TIME10 := TARGET_TO_HOST(duration(1.65000000000000E+00));
cnr_link_op_STOP_TIME10 := TARGET_TO_HOST(duration(1.70000000000000E-+00));
shooter_op_START_TIME11 := TARGET_TO_HOST(duration(1.70000000000000E+00));
shooter_op_STOP_TIME11 := TARGET_TO_HOST(duration(1.75000000000000E~+00));
gui_input_event_monitor_START_TIME12 := TARGET_TO_HOST(duration(1.75000000000000E+00));
gui_input_event_monitor_STOP_TIME12 := TARGET_TO_HOST(duration(1.95000000000000E+00));
scdl_link_op_START_TIME13 := TARGET_TO_HOST(duration(3.00000000000000E+00));
scdl_link_op STOP_TIME13 := TARGET_TO_HOST(duration(3.05000000000000E+00));
lanl_link_op_START_TIMEI14 := TARGET TO_HOST(duration(3.10000000000000E+00));
lanl_link_op_STOP_TIME14 := TARGET_TO_HOST(duration(3.15000000000000E+00));
choose_inputs START_TIME1S := TARGET_TO_HOST(duration(3.35000000000000E+00));

81

choose_inputs STOP_TIME1S := TARGET_TO_HOST (duration(3.55000000000000E+00));
lan2_link_op_START_TIME16 := TARGET_TO_HOST(duration(3.55000000000000E+00));
lan2_link_op_STOP_TIME16 := TARGET_TO_HOST(duration(3.60000000000000E+00));
ctoc_op_START_TIME17 := TARGET_TO_HOST(duration(3.60000000000000E+00));
ctoc_op_STOP_TIME17 := TARGET_TO_HOST(duration(3.65000000000000E-+00));
cnr_link_op START_TIMEIS := TARGET_TO_HOST(duration(3.65000000000000E-+00));
cnr_link_op_STOP_TIME18 := TARGET_TO_HOST(duration(3.70000000000000E+00));
shooter_op_START_TIMEI19 := TARGET_TO_HOST(duration(3.70000000000000E+00));
shooter_op_STOP_TIME19 := TARGET_TO_HOST(duration(3.75000000000000E+00));

sedl_link_op START_TIME20 := TARGET_TO_HOST (duration(5.00000000000000E-+00));
scdl_link_op_STOP_TIME20 := TARGET_TO_HOST(duration(5.05000000000000E-+00));
grnd_stat_mod_op_START_TIME21 := TARGET_TO_HOST(duration(5.05000000000000E+00));
gmd_stat_mod_op_STOP_TIME21 := TARGET_TO_HOST(duration(5.10000000000000E+00));
lanl_link_op START_TIME22 := TARGET_TO_HOST(duration(5.10000000000000E-+00));
lanl_link_op_STOP_TIME22 := TARGET_TO_HOST(duration(5.15000000000000E+00));
asas_op_START_TIME23 := TARGET_TO_HOST(duration(5.15000000000000E+00));
asas_op_STOP_TIME23 := TARGET_TO_HOST(duration(5.35000000000000E+00));
choose_inputs_START_TIME24 := TARGET_TO_HOST(duration(5.35000000000000E-+00));
choose_inputs_STOP_TIME24 := TARGET_TO_HOST(duration(5.55000000000000E-+00));
lan2_link_op_START_TIME25 := TARGET_TO_HOST/(duration(5.55000000000000E-+00));
lan2_link_op_STOP_TIME25 := TARGET_TO_HOST(duration(5.60000000000000E+00));
ctoc_op_START_TIME26 := TARGET_TO_HOST(duration(5.60000000000000E-+00));
ctoc_op_STOP_TIME26 := TARGET_TO_HOST(duration(5.65000000000000E-+00));
cnr_link_op_START_TIME27 := TARGET_TO_HOST(duration(5.65000000000000E+00));
cnr_link_op_STOP_TIME?27 := TARGET_TO_HOST(duration(5.70000000000000E~+00));
shooter_op_START_TIME28 := TARGET_TO_HOST(duration(5.70000000000000E+00));
shooter_op_STOP_TIME28 := TARGET_TO_HOST(duration(5.75000000000000E-+00));
gui_input_event_monitor START_TIME29 := TARGET TO_HOST(duration(5.75000000000000E-+00));
gui_input_event_monitor_STOP_TIME29 := TARGET_TO_HOST(duration(5.95000000000000E-+00));
scdl_link_op_START_TIME30 := TARGET_TO_HOST (duration(7.00000000000000E+00));
scdl_link_op_STOP_TIME30 := TARGET_TO_HOST(duration(7.05000000000000E+00)):
lani_link_op_START_TIME31 := TARGET_TO_HOST(duration(7.10000000000000E-+00));
lan_link_op_STOP_TIME31 := TARGET_TO_HOST(duration(7.15000000000000E-+00));
choose_inputs START_TIME32 := TARGET_TO_HOST(duration(7.35000000000000E-+00));
choose_inputs_STOP_TIME32 := TARGET_TO_HOST(duration(7.55000000000000E+00));
lan2_link_op_START TIME33 := TARGET_TO_HOST(duration(7.55000000000000E+00));
lan2_link_op_STOP_TIME33 := TARGET_TO_HOST(duration(7.60000000000000E-+00));
ctoc_op_START_TIME34 := TARGET_TO_HOST(duration(7.60000000000000E-+00));
ctoc_op_STOP_TIME34 := TARGET_TO_HOST(duration(7.65000000000000E+00));
cnr_link_op_START_TIME3S := TARGET_TO_HOST(duration(7.65000000000000E-+00));
cnr_link_op_STOP_TIME3S := TARGET_TO_HOST(duration(7.70000000000000E+00));
shooter_op_START_TIME36 := TARGET_TO_HOST(duration(7.70000000000000E+00));
shooter_op_STOP_TIME36 := TARGET_TO_HOST(duration(7.75000000000000E-+00));
jstars_op_START_TIME37 := TARGET _TO_HOST(duration(8.50000000000000E-+00));
jstars_op_STOP_TIME37 := TARGET_TO_HOST(duration(9.00000000000000E-+00));
scdl_link_op_START_TIME38 := TARGET_TO_HOST(duration(9.00000000000000E+00)); _
sed_link_op_STOP_TIME38 := TARGET_TO_HOST(duration(9.05000000000000E+00)),
gmd_stat_mod_op_START_TIME39 := TARGET_TO_HOST(duration(9.05000000000000E-+00));
gmd_stat_mod_op_STOP_TIME39 := TARGET_TO_HOST(duration(9.10000000000000E+00));
lanl_link_op_START_TIMEA40 := TARGET_TO_HOST(duration(9.10000000000000E+00));
lan_link_op_STOP_TIME40 := TARGET_TO_HOST(duration(9.15000000000000E+00));
asas_op_START_TIME41 := TARGET_TO_HOST(duration(9.15000000000000E-+00));
asas_op_STOP_TIMEA41 := TARGET_TO_HOST(duration(9.35000000000000E-+00));
choose_inputs_START_TIME42 := TARGET_TO_HOST(duration(9.35000000000000E-+00));
choose_inputs_STOP_TIME42 := TARGET_TO_HOST(duration(9.55000000000000E+00)),
lan2_link_op_START_TIME43 := TARGET_TO_HOST(duration(9.55000000000000E+00));
lan2_link_op_STOP_TIME43 := TARGET_TO_HOST(duration(9.60000000000000E+00)),
ctoc_op_START_TIMEA44 := TARGET_TO_HOST(duration(9.60000000000000E-+00));
ctoc_op_STOP_TIMEA44 := TARGET_TO_HOST(duration(9.65000000000000E+00));
cnr_link_op_START_TIMEA4S := TARGET_TO_HOST(duration(9.65000000000000E-+00));
enr_link_op_STOP_TIMEA4S := TARGET_TO_HOST(duration(9.70000000000000E--00));
shooter_op_START_TIME46 := TARGET_TO_HOST(duration(9.70000000000000E+00));
shooter_op_STOP_TIME46 := TARGET_TO_HOST(duration(9.75000000000000E--00)):
gui_input_event_monitor_START_TIMEA7 := TARGET_TO_HOST(duration(9.75000000000000E-+00));
gui_input_event_monitor_STOP_TIMEA47 := TARGET_TO_HOST(duration(9.95000000000000E-+00));
scd_link_op_START_TIME4S8 := TARGET_TO_HOST(duration(1.10000000000000E+01));
scd]_link_op_STOP_TIMEA48 := TARGET_TO_HOST(duration(1.10500000000000E-+01));
lani_link_op_START_TIME49 := TARGET_TO_HOST(duration(1.11000000000000E+01));
lan1_link_op_STOP_TIME49 := TARGET_TO_HOST(duration(1.11500000000000E+01));

82

choose_inputs START_TIMES0 := TARGET_TO_HOST(duration(1.13500000000000E+01));
choose_inputs_STOP_TIMES0 := TARGET_TO_HOST(duration(1.15500000000000E-+01));
lan2_link_op_START_TIMES1 := TARGET_TO_HOST(duration(1.15500000000000E+01));
lan2_link_op_STOP_TIMES1 := TARGET_TO_HOST(duration(1.16000000000000E-+01));
ctoc_op_START_TIMES2 := TARGET_TO_HOST{(duration(1.16000000000000E+01));
ctoc_op_STOP_TIMES? := TARGET_TO_HOST(duration(1.16500000000000E+01));
cnr_link_op_START_TIMES3 := TARGET_TO_HOST(duration(1.16500000000000E+01));
cnr_link_op_STOP_TIMES3 := TARGET_TO_HOST(duration(1.17000000000000E-+01));
shooter_op_START_TIMES4 := TARGET_TO_HOST(duration(1.17000000000000E-+01));
shooter_op_STOP_TIMES4 := TARGET_TO_HOST(duration(1.17500000000000E+01));
scd]_link_op_START_TIMESS := TARGET_TO_HOST(duration(1.30000000000000E-+01));
sedl_link_op_STOP_TIMESS := TARGET_TO_HOST(duration(1.30500000000000E+01));

gmd stat_mod_op_START_TIMES6 := TARGET_TO_HOST(duration(1.30500000000000E+01));
grmd_stat_mod_op_STOP_TIMES6 := TARGET_TO_HOST(duration(1.31000000000000E+01));
lanl_link_op_START_TIMES7 := TARGET_TO_HOST(duration(1.31000000000000E+01));

lan1_link_op_STOP_TIMES?7 := TARGET_TO_HOST(duration(1.31500000000000E-+01));

asas_op_START_TIMESS8 := TARGET_TO_HOST(duration(1.31500000000000E+01));
asas_op_STOP_TIMESS := TARGET_TO_HOST(duration(1.33500000000000E+01));
choose_inputs START_TIMES9 := TARGET_TO_HOST(duration(1.33500000000000E+0 1)
choose_inputs_STOP_TIMES9 := TARGET_TO_HOST(duration(1.35500000000000E+01));
lan2 link op START_TIME60 := TARGET_TO_HOST(duration(1.35500000000000E-+01));
lan2_fink_op_STOP_TIME60 := TARGET_TO_HOST(duration(1.36000000000000E+01));
ctoc_op_START_TIME61 := TARGET_TO_HOST(duration(1.36000000000000E+01));
ctoc_op_STOP_TIMES1 := TARGET_TO_HOST(duration(1.36500000000000E+01));
cnr_link_op_START_TIME62 := TARGET_TO_HOST(duration(1.36500000000000E+01));
cnr_link_op_STOP_TIMES2 := TARGET_TO_HOST(duration(1.37000000000000E+01));
shooter_op START_TIMES63 := TARGET_TO_HOST(duration(1.37000000000000E+01));
shooter_op_STOP_TIME63 := TARGET_TO_HOST(duration(1.37500000000000E+01));
gui_input_event_moniter START_TIME64 := TARGET_TO_HOST(duration(1.37500000000000E+01));
gui_input_event_monitor STOP_TIME64 := TARGET_TO_HOST(duration(1.39500000000000E+01));
sedl_link_op START_TIMES6S := TARGET_TO_HOST(duration(1.50000000000000E+01));
sedl_link_op_STOP_TIMES6S := TARGET_TO_HOST(duration(1.50500000000000E-+01));
lan]_link op_START_TIMES66 := TARGET_TO_HOST(duration(1.51000000000000E+01));
lan_link_op_STOP_TIMES66 := TARGET_TO_HOST(duration(1.51500000000000E+01));
choose_inputs_START_TIMES67 := TARGET_TO_HOST(duration(1.53500000000000E+01));
choose_inputs STOP_TIME67 := TARGET_TO_HOST(duration(1.55500000000000E+01));
lan2 link op_START_TIMESS := TARGET_TO_HOST(duration(1.55500000000000E+01));
lan2_link_op_STOP_TIME68 := TARGET_TO_HOST(duration(1.56000000000000E+01));
ctoc_op_START_TIME6Y := TARGET_TO_HOST(duration(1.56000000000000E+01));
ctoc_op_STOP_TIME69 := TARGET_TO_HOST/(duration(1.56500000000000E-+01));
cnr_link_op_START_TIME70 := TARGET_TO_HOST(duration(1.56500000000000E-+01));
cnr_link_op_STOP_TIME70 := TARGET_TO_HOST(duration(1.57000000000000E+01));
shooter_op_START_TIME71 := TARGET_TO_HOST(duration(1.57000000000000E+01));
shooter_op_STOP_TIME71 := TARGET_TO_HOST(duration(1.57500000000000E+01));
START(schedule_timer);
loop

delay(target_emitter_ op_START_TIME1 - HOST_DURATION(schedule_timer));

target emitter op_ DRIVER;

if HOST_DURATION(schedule_timer) > target_emitter_op_STOP_TIME] then

PUT_LINE("timing error from operator target_emitter_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST DURATION(schedule_timer)- target_emitter_op_STOP_TIME1);
end if;

delay(jstars_op_START_TIME2 - HOST_DURATION(schedule_timer));
jstars_op_DRIVER;
if HOST_DURATION(schedule_timer) > jstars_op_STOP_TIME2 then
PUT_LINE("timing error from operator jstars_op");
SUBTRACT_HOST _TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer)- jstars_op_STOP_TIME2),
end if}

delay(sedl_link_op_START_TIME3 - HOST_DURATION(schedule_timer));
sedl_link_op_DRIVER;
if HOST_DURATION(schedule_timer) > scdl_link_op_STOP_TIME3 then
PUT_LINE("timing error from operator scdl_link_op™);
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - scdl_link_op_STOP_TIME3);
end if;

83

delay(gmd_stat mod_op_START_TIME4 - HOST_DURATION(schedule_timer));
grad_stat mod_op_DRIVER;
if HOST DURATION(schedule :_timer) > grnd_stat mod_op_STOP_TIMEA4 then

PUT_LINE("timing error from operator gmd_stat_mod_op");

SUBTRACT _HOST TIME_FROM_ALL TIMERS(HOST _DURATION(schedule_timer) - grmd_stat_mod_op_STOP_TIMEA4);
end if}

delay(lanl_link_op_START_TIMES - HOST DURATION(schedule_timer));
lanl_link_op_DRIVER;

if HOST_DURATION(scheduIe_timer) >lanl_link_op_STOP_TIMES then

PUT_LINE("timing error from operator lan1_link_op");

SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST _DURATION(schedule timer) - lan1 _link_op_STOP_TIMES);
end if,

delay(asas op_START_TIMEG - HOST_DURATION(schedule_timer));
op_DRIVER;
1f HOST ' DURATION(schedule_timer) > asas op STOP _TIMES then
PUT_LINE("timing error from operator asas_op
SUBTRACT_HOST _TIME_FROM_ALL TIMERS(HOST __DURATION(schedule_timer) - asas_op_STOP_TIMES);
end if;

delay(choose_inputs START_TIME7 - HOST_DURATION(schedule_timer));
choose_inputs DRIVER;
ifHOST_DURATION(schedule_timer) > choose_inputs STOP_TIME?7 then
PUT_LINE("timing error from operator choose_inputs");
SUBTRACT_HOST_TIME_FROM_ALL TIMERS(HOST DURATION(schedule_timer) - choose_inputs STOP ' TIME?7);
end if;

delay(lan2_link_op_START_TIMES - HOST_DURATION(schedule_timer));

lan2_link _op_DRIVER;

if HOST_DURATION(schedule_timer) > lan2_link_op_STOP_TIMES then

PUT_LINE("timing error from operator lan2_link_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - lan2_link_op_STOP_TIMES);
end if;,

delay(ctoc_op_START_TIMES - HOST DURATION(schedule_timer));

ctoc_op_DRIVER;

if HOST_DURATION(schedule_timer) > ctoc_op_STOP_TIME9 then

PUT_LINE("timing error from operator ctoc_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - ctoc_op_STOP_TIME9);
end if}

delay(cnr_link_op_START_TIME10 - HOST_DURATION(schedule_timer));
cnr_link_op_DRIVER;

if HOST_DURATION(schedule_timer) > cnr_link_op_STOP_TIME10 then

PUT_LINE("timing error from operator cnr_link_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer)-cnr_link_op_STOP_TIME10);
end if}

delay(shooter_op_START_TIME11 - HOST_DURATION(schedule_timer));
shooter_op_DRIVER;
if HOST_DURATION(schedule_timer) > shooter_op_STOP_TIME11 then
PUT_LINE("timing error from operator shooter_op");
SUBTRACT_HOST_TIME_FROM_ALIL_TIMERS(HOST _DURATION(schedule_timer) - shooter_op_STOP_TIME11);
end if}

delay(gul _input_event_monitor_ START_TIME12 - HOST DURATION(schedule >_timer));
gui_input_event_monitor DRIVER,

if HOST_DURATION(schedule_tlmer) > gui__input_event_monitor_STOP_TIMElZ then
PUT_LINE("timing error from operator gui_input_event_monitor");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) -
gui_input_event_monitor STOP TIME12)

end if}

84

delay(scdl_link_op START_TIMEI3 - HOST_DURATION(schedule >_timer));

scdl_link_op DRIVER;

if HOST_DURATION(schedule_timer) > scdl_link_op_STOP_TIMEI3 then

PUT_LINE("timing error from operator scdl_link_op");

SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST DURATION(schedule _timer) - scdl_link_op_STOP_TIME13);
end if;

delay(ianl_link_op_START TIME14 - HOST DURATION(schedule_timer));

lan]_link_op_DRIVER;

if HOST DURATION(schedule :_timer) > lanl_link_op_STOP_TIME14 then

PUT_LINE("timing error from operator lanl_link_op");

SUBTRACT_HOST_TIME_FROM_ALL _TIMERS(HOST_DURATION(schedule_timer) - lan1_link ._op_STOP_TIME14),
end if;

delay(choose_inputs START_TIMELS - HOST_DURATION(schedule_timer));
choose_inputs_DRIVER;

if HOST_DURATION(schedule_timer) > choose_inputs_STOP_TIME15 then

PUT_LINE("timing error from operator choose_inputs");

SUBTRACT_HOST_TIME_FROM_ALL TIMERS(HOST_DURATION(schedule_timer) - choose >_inputs STOP_TIMEL1S);
end if;

delay(lan2_link_op_START TIME16 - HOST_DURATION(schedule_timer));

lan2_link_op DRIVER;

if HOST_DURATION(schedule_timer) > fan2_link_op_STOP_TIME16 then

PUT_LINE("timing error from operator lan2_link_op");

SUBTRACT_HOST_TIME FROM_ALL_TIMERS(HOST_DURATION(schedule > timer) - lan2 lmk ._op_STOP_TIME16);
end if,

delay(ctoc_op_START_TIME17 - HOST_DURATION(schedule_timer));
ctoc_op_DRIVER;
if HOST_DURATION(schedule_timer) > ctoc_op_STOP_TIME17 then

PUT_LINE("timing error from operator ctoc_op");
SUBTRACT_HOST_TIME_FROM_ALIL_TIMERS(HOST_DURATION(schedule_timer) - ctoc _op_STOP_TIME17);
end if;

delay(cnr_link: op_ START TIME18 - HOST_DURATION(schedule_timer));
cnr_link_op DRIVER;
ifHOST_ __DURATION(schedule_timer) > car_link _op_ STOP TIME18 then
PUT_LINE("timing error from operator cnr_link_op'
SUBTRACT_HOST_TIME_FROM_ALL 'I'IMERS(HOST __DURATION(schedule_timer) - cnr_| lmk ._op_STOP_TIME18);
end if;

delay(shooter_op_START_TIME19 - HOST_DURATION(schedule_timer));

shooter_op_DRIVER;

if HOST _DURATION(schedule_timer) > shooter_op_STOP_TIMEI1S then

PUT_LINE("timing error from operator shooter_op");

SUBTRACT_HOST_TIME] FROM [ALL TIMERS(HOST _DURATION(schedule_timer) - shooter_op_STOP_TIME19);
end if;

delay(scdl_link_op_START_TIME20 - HOST _DURATION(schedule_timer));

scdl_link op_DRIVER;

if HOST DU'RATION(schedule >_timer) > scdl_link_op_STOP_TIME20 then

PUT_LINE("timing error from operator scdl_| Tink . op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - scdl_link ._op_STOP_TIME20);
end if}

delay(gmd_stat mod_op_START_TIME21 - HOST DURATION(schedule_timer));

gmd_stat mod_op_DRIVER;

if HOST_DURATION(schedule >_timer) > gmd_stat_mod_op_STOP_TIME21 then
PUT " LINE("timing error from operator grmd_stat_mod _op");

SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) -gmd_stat mod_op_STOP TIME21);

end if;

delay(lan1_link_op_START_TIME22 - HOST_DURATION(schedule_timer));

lanl_link op_DRIVER;

if HOST DURATION(schedule_timer) > lan]_link_op_STOP_TIME22 then

PUT_LINE("timing error from operator lan1_link_op");

SUBTRACT_HOST_TIME_FROM_ALL TIMERS(HOST _DURATION(schedule_timer) - lan1_link_op_STOP_TIME22);
end if

85

delay(asas op_START_TIME23 - HOST DURATION(schedule_timer));
asas_op DRIVER;
if HOST_DURATION(schedule_timer) > asas_op_STOP_TIME?23 then
PUT_LINE("timing error from operator asas_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_ DURATION(schedule_timer) - asas_op_STOP *_TIME23),
end if;

delay(choose_inputs START_TIME24 - HOST _DURATION(schedule_timer));
choose_inputs DRIVER;
if HOST_DURATION(schedule_timer) > choose_inputs STOP_TIME24 then
PUT_LINE("timing error from operator choose_inputs™);
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - choose_inputs_STOP ' TIME24);
end if}

delay(lan2_link_op START TIME25 - HOST DURATION(schedule_timer));
lan2_link op_DRIVER;

if HOST DURATION(schedule >_timer) > lan2_link_op_STOP_TIME?2S5 then

PUT_LINE("timing error from operator lan2_link_op™);

SUBTRACT_HOST_TIME_FROM_ALL TIMERS(HOST " DURATION(schedule_timer) - lan2_link_op_STOP_TIME2S5);
end if]

delay(ctoc_op_START_TIME26 - HOST_DURATION(schedule_timer));
ctoc_op_DRIVER;
if HOST_DURATION(schedule_timer) > ctoc_op_STOP_TIME26 then
PUT_LINE("timing error from operator ctoc_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - ctoc_op_STOP_TIME26);
end if}

delay(cnr_link_op_START ’I'IME27 HOST_DURATION(schedule_timer));
cnr_link_op_DRIVER;
if HOST DURATION(schedule ,_timer) > cnr_link_op_STOP_TIME27 then
PUT_LINE("timing error from operator cnr_link_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - cr_link_op_STOP _TIME27);
end if;

delay(shooter_op START_ TIME28 - HOST_DURATION(schedule_timer));
shooter_op_DRIVER;
if HOST _DURATION(schedule_timer) > shooter_op_STOP_TIME28 then
PUT_LINE("timing error from operator shooter_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - shooter_op_STOP_TIME28);
end if;

delay(gul i_input_event_monitor START TIME29 - HOST_DURATION(schedule_timer));

gui_input_event monitor DRIVER,

if HOST_DURATION(schedule_timer) > gul _input_event_monitor STOP_TIME29 then
PUT_LINE("timing error from operator gui_input_event- monitor");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) -
gui_input_event_monitor_STOP_TIME29);

endif;

delay(scdl_link_op START_TIME30 - HOST_DURATION(schedule_timer));
scdl_link op_DRIVER;
ifHOST_DURATION(schedule_timer) > scdl_link_op_STOP_TIME30 then
PUT_LINE("timing error from operator scdl_link_op™);
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - scdl_link_op_STOP_TIME30);
end if;

delay(lanl_link_op_START_TIME31 - HOST_DURATION(schedule_timer));

lanl_link op DRIVER;

if HOST_DURATION(schedule_timer) > lanl_link_op_STOP_TIME31 then

PUT_LINE("timing error from operator lanl_link_op");

SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST DURATION(schedule_timer) - lanl _link_op_STOP_TIME31);
end if,

delay(choose_inputs START TIME32 - HOST_DURATION(schedule_timer));

choose_inputs DRIVER;

if HOST_DURATION(schedule_timer) > choose_inputs STOP_TIME32 then
PUT_LINE("timing error from operator choose_inputs");

86

SUBTRACT_HOST_TIME__FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - choose_inputs_STOP_TIME32),
end if}

delay(lan2_link_op_START_TIME33 - HOST_DURATION(schedule_timer));
lan2_link op_DRIVER;
if HOST_DURATION(schedule_timer) > lan2_link_op_STOP_TIME33 then
PUT_LINE("timing error from operator lan2_link_op");
SUBTRACT_HOST_TIME__FROM_ALL__TIMERS(HOST_DURATION(schedule_ﬁmer) -lan2_link op_STOP_TIME33);
end if;

delay(ctoc_op_START_TIME34 - HOST_DURATION(schedule_timer));
ctoc_op_DRIVER;
if HOST_DURATION(schedule_timer) > ctoc_op_STOP_TIME34 then
PUT_LINE("timing error from operator ctoc_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - ctoc_op_STOP_TIME34),
end if;

delay(enr_link_op_START_TIME3S5 - HOST DURATION(schedule timer));
cnor_link_op DRIVER;
if HOST_DURATION(schedule_timer) > cnr_link_op STOP_TIME3S5 then
PUT_LINE("timing error from operator cnr_link_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - cnr_link_op_STOP_TIME35);
end if}

delay(shooter_op_START TIME36 - HOST_DURATION(schedule_timer));
shooter_op DRIVER;
if HOST_DURATION(schedule_timer) > shooter_op_STOP_TIME36 then
PUT_LINE("timing error from operator shooter_op™);
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - shooter_op_STOP_TIME36),
end if;

delay(jstars_op_START_TIME37 - HOST_DURATION(schedule_timer));
jstars_op_DRIVER;
if HOST _DURATION(schedule_timer) > jstars_op_STOP_TIME37 then
PUT_LINE("timing error from operator jstars_op");
SUBTRACT _HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer)- jstars_op_STOP_TIME37);
end if, .

delay(scdl_link_op_START_TIME38 - HOST_DURATION(schedule_timer));
sedl_link_op DRIVER:
if HOST_DURATION(schedule_timer) > scdl_link_op_STOP_TIME38 then
PUT_LINE("timing error from operator scdl_link_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer)- scdl_link_op_STOP_TIME38);
end if;

delay(grd_stat mod_op_START_TIME39 - HOST_DURATION(schedule_timer));

grnd_stat mod_op_DRIVER;

if HOST_DURATION(schedule_timer) > grnd_stat mod_op_STOP_TIME39 then
PUT_LINE("timing error from operator gmd_stat_mod_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedulé_timer) -
grnd_stat_mod_op_STOP_TIME39);

end if}

delay(lanl_link_op_START_ TIME40 - HOST_DURATION(schedule_timer));
lanl_link_op_DRIVER;
ifHOST_DURATION(schedule_timer) > lan1_link_op_STOP_TIME40 then
PUT_LINE("timing error from operator lanl_link_op");
SUBTRACT_HOST_TME__FROM_ALL_’I’IMERS(HOST_DURATION(schedule_timer) -lanl_link op_STOP_TIME40),
end if}

delay(asas_op_START_TIME41 - HOST_DURATION(schedule_timer));
asas_op_DRIVER;
if HOST_DURATION(schedule_timer) > asas_op_STOP_TIME41 then

PUT_LINE("timing error from operator asas_op");

SUBTRACT_HOST_TIME FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - asas_op_STOP_TIME41);
end if;

87

delay(choose_inputs START TIME42 - HOST_DURATION(schedule_timer));
choose_inputs DRIVER;
if HOST_DURATION(schedule_timer) > choose_inputs STOP_TIME42 then
PUT_LINE("timing error from operator choose_inputs");
SUBTRACT_HOST TIME FROM ALL_TIMERS(HOST_DURATION(schedule_timer) - choose_inputs STOP_TIME42);
end if;

delay(lan2_link op_START_ TIME43 - HOST_DURATION(schedule_timer));
lan2_link op DRIVER;
if HOST DURATION(schedule _timer) > lan2] lmk _op_STOP_TIME43 then
PUT_LINE("timing error from operator lan2_link_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST DURATION(schedule_timer) -lan2_link_op_STOP TIME43),
end if;

delay(ctoc_op_START_TIME44 - HOST_DURATION(schedule_timer));
ctoc_op_DRIVER;
if HOST_DURATION(schedule_timer) > ctoc_op_STOP_TIME44 then
PUT_LINE("timing error from operator ctoc_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - ctoc_op_STOP_TIME44);
end if;

delay(cnr_link_op_START TIME45 - HOST _DURATION(schedule_timer));
cnr_link_op_DRIVER;
if HOST_ DURATION(schedule timer) > cnr_link_op_STOP_TIME4S then
PUT_LINE("timing error from operator cnr_link_op");
SUBTRACT_HOST TIME_FROM_ALL_TIMERS(HOST DURATION(schedule_timer) - car_link_op_STOP_TIMEA45);
end if;

delay(shooter_op_START_TIME46 - HOST DURATION(schedule_timer));
shooter_op DRIVER;
if HOST _DURATION(schedule_timer) > shooter_op_STOP_TIME46 then
PUT_LINE("timing error from operator shooter_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST DURATION(schedule_timer) - shooter_op_STOP_TIMEA6);
end if;

delay(gui input_event_monitor START TIME47 - HOST_DURATION(schedule_timer));

gui_input_event_monitor DRIVER;

if HOST _DURATION(schedule_timer) > gu: input_event_monitor STOP_TIME47 then
PUT_LINE("timing error from operator gui_input_event_monitor™);
SUBTRACT_HOST_TIME_FROM_ALL TIMERS(HOST DURATION(schedule_timer) -
gui_input_event_monitor STOP_TIME47);

end if;

delay(scdl_link_op_START_TIME48 - HOST_DURATION(schedule_timer));
scdl link_op_ DRIVER;
if HOST_DURATION(schedule_timer) >scdl_link_op_STOP_TIME48 then
PUT_LINE("timing error from operator scdl_lmk__op"),
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - scdl_link_op_STOP_TIME48);
end if;

delay(lanl_link_op_START TIME49 - HOST DURATION(schedule_timer));

lanl_link op DRIVER;

if HOST DURATION(schedule_timer) > lanl_link op STOP_TIME49 then

PUT_LINE("timing error from operator lanl_link_op");

SUBTRACT HOST_TIME_FROM_ALL_TIMERS(HOST DURATION(schedule_timer) - lanl_link_op_STOP_TIMEA49);
end if}

delay(choose_inputs START_TIMES50 - HOST_DURATION(schedule_timer));
choose_inputs_DRIVER;
if HOST_DURATION(schedule_timer) > choose_inputs_ STOP_TIMESO then
PUT_LINE("timing error from operator choose_inputs");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - choose_inputs STOP_TIMES0);
end if}

delay(lan2_link_op_START_TIMES1 - HOST_DURATION(schedule_timer));
lan2_link_op DRIVER;
if HOST_DURATION(schedule_timer) > lan2_link op_STOP_TIMES1 then
PUT_LINE("timing error from operator lan2_link _op");
SUBTRACT_HOST_TIME FROM_ALL_TIMERS(HOST DURATION(schedule_timer) - lan2_link_op_STOP_TIMES1);

88

end if;

delay(ctoc_op_START_TIMES52 - HOST_DURATION(schedule_timer));
ctoc_op_DRIVER;
if HOST_DURATION(schedule_timer) > ctoc_op_STOP_TIMES2 then
+PUT_LINE("timing error from operator ctoc_op");
SUBTRACT_HOST_TIME_FROM_ALL _TIMERS(HOST DURATION(schedule_timer) - ctoc_op_STOP_TIMES2);
end if;

delay(cnr_link_op_START_TIMES3 - HOST_DURATION(schedule_timer));

cnr_link_op_DRIVER;

if HOST_ DURATION(schedule _timer) > cnr_link_op_STOP_TIMES3 then

PUT_LINE("timing error from operator car_link_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - cnr_link_op_STOP_TIMES3);
end if}

delay(shooter_op_START_TIMES54 - HOST_DURATION(schedule_timer));
shooter_op_DRIVER;
if HOST_DURATION(schedule_timer) > shooter_op_STOP_TIMES54 then
PUT_LINE("timing error from operator shooter_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - shooter_op_STOP _TIMES4);
end if;

delay(scdl link_op_START_TIMES5 - HOST_DURATION(schedule_timer));
scdl_link_op_DRIVER;
if HOST_DURATION(schedule_timer) > scdl_link_op STOP_TIMESS then
PUT_LINE("timing error from operator scdl_link_op");
SUBTRACT_HOST_TIME_FROM_ALL TIMER.S(HOST DURATION(schedule_timer) - scdl_link_op_STOP_TIMESS),
end if]

delay(gmd_stat mod_op_START_TIMES56 - HOST_DURATION(schedule_timer));
gmd_stat mod_op_DRIVER;
if HOST_DURATION(schedule_timer) > grnd_stat mod_op_STOP_TIMES56 then
PUT_LINE("timing error from operator grd_stat_mod_op");
SUBTRACT HOST_TIME_FROM_ALL TIMERS(HOST DURATION(schedule_timer) -
gmd_stat_mod_op_STOP_TIMES6),
end if}

delay(lanl_link_op_START TIMES7 - HOST _DURATION(schedule_timer));
lanl_link_op_DRIVER;
if HOST_DURATION(schedule_timer) > lanl_link_op_STOP_TIMES7 then
PUT_LINE("timing error from operator lanl_link_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - lanl_link_op_STOP_TIMES7);
end if}

delay(asas op_START_TIMESS8 - HOST_DURATION(schedule_timer));
op_DRIVER;
xf HOST " DURATION(schedule_timer) > asas_op_STOP_TIMESS then
PUT_LINE("timing error from operator asas_op");
SUBTRACT_HOST_TIME_FROM_ALL TIMERS(HOST_ DURATION(schedule_timer) - asas_ op STOP *_TIMESS);
end if,

delay(choose_inputs_ START TIMESS - HOST_DURATION(schedule_timer));
choose_inputs DRIVER;
if HOST_DURATION(schedule_timer) > choose_inputs STOP_TIMES9 then

PUT_LINE("timing error from operator choose_inputs");

SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST _DURATION(schedule_timer) - choose_inputs STOP_TIMES59);
end if}

delay(lan2_link_op_START_TIME60 - HOST_DURATION(schedule >_timer));

lan2_link op DRIVER;

if HOST_DURATION(schedule_timer) > Ian2_link_op_STOP_TIME60 then

PUT_LINE("timing error from operator lan2_link_op");

SUBTRACT_HOST_TIME_FROM_ALL TIMERS(HOST _DURATION(schedule_timer) - lan2_link_op_STOP_TIME60);
end if,

delay(ctoc_op_START_TIME61 - HOST_DURATION(schedule_timer));

ctoc_op_DRIVER;
if HOST_DURATION(schedule_timer) > ctoc_op_STOP_TIMES61 then

89

PUT_LINE("timing error from operator ctoc_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - ctoc_op_STOP_TIME61);
end if;

delay(cnr_link_op_START_TIMES62 - HOST_DURATION(schedule_timer));
cnr_link op DRIVER;
if HOST_DURATION(schedule_timer) > cnr_link_op_STOP_TIME62 then
PUT_LINE("timing error from operator cnr_ink_op™);
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - enr_link_op_STOP_TIMEG62),
end if;

delay(shooter_op_START_TIME63 - HOST _DURATION(schedule_timer));
shooter_op_DRIVER;
if HOST_DURATION(schedule_timer) > shooter_op_STOP_TIME63 then
PUT_LINE("timing error from operator shooter_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_ DURATION(schedule_timer) - shooter_op_STOP_TIME63);
end if,

delay(gui_input_event monitor START TIME64 - HOST_DURATION(schedule_timer));

gui_input_event_monitor DRIVER;

if HOST _DURATION(schedule_timer) > gui_input_event monitor STOP_TIME64 then
PUT_LINE("timing error from operator gui_input_event_monitor");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) -
gui_input_event_monitor_STOP_TIME64);

end if;

delay(scdl_link_op_START_TIMESGS - HOST_DURATION(schedule_timer));
scdl_link_op_DRIVER;
if HOST_DURATION(schedule_timer) > scdl_link_op_STOP_TIMESS then
PUT_LINE("timing error from operator scdl_link_op");
SUBTRACT_HOST__TIME_FROM_ALL_’I’IMERS(HOST_DURATION(schedule_timer) -scdl_link_op_STOP_TIMESS);
end if,

delay(lan]_tink_op START _TIME66 - HOST_DURATION(schedule_timer));
lanl_link_op_DRIVER;
ifHOST_DURATION(schedule_timer) >lanl_link_op STOP_TIME66 then
PUT_LINE(“timing error from operator lanl_link_op");
SUBTRACT_HOST_TIME_FROM_ALL _TIMERS(HOST_DURATION(schedule_timer)-lan 1_link_op_STOP_TIMEG66),
end if, '

delay(choose_inputs START_TIME67 - HOST_DURATION(schedule_timer));
choose_inputs DRIVER;
if HOST_DURATION(schedule_timer) > choose_inputs STOP_TIME67 then
PUT_LINE("timing error from operator choose_inputs");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - choose_inputs_STOP_TIME67);
end if}

delay(lan2_link_op_START_TIME68 - HOST_DURATION(schedule_timer));
lan2_link_op DRIVER;
if HOST_DURATION(schedule_timer) > lan2_link_op_STOP_TIME6S then
PUT_LINE("timing error from operator lan2_link_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) - lan2_link_op_STOP_TIME6S),
end if;

delay(ctoc_op_START_TIME69 - HOST DURATION(schedule_timer));
ctoc_op_DRIVER;
ifHOST_DURATION(schedule_timer) > ctoc_op_STOP_TIME69 then
PUT_LINE(“timing error from operator ctoc_op™);
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer)- ctoc_op_STOP_TIME69);
end if;

delay(cnr_link_op_START_TIME70 - HOST DURATION(schedule_timer));
cnr_link_op DRIVER;
if HOST_DURATION(schedule_timer) > cnr_link_op_STOP_TIME70 then
PUT_LINE("timing error from operator cnr_link_op");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timet) -cnr_link_op_STOP_TIME70);
end if;

delay(shooter_op START TIME71 - HOST_DURATION(schedule_timer));

90

shooter_op_DRIVER;
if HOST_DURATION(schedule tlmer)>shootet - op_STOP_TIME7! then

PUT_LINE("timing error from operator shooter_op™");

SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST DURATION(schedule >_timer) - shooter_op_STOP_TIME71),
end if;

delay(PERIOD - HOST_DURATION(schedule_timer));
RESET(schedule_timer);
end loop;
end STATIC_SCHEDULE_TYPE;

procedure START_STATIC_SCHEDULE is
begin

STATIC_SCHEDULE.START;
end START STATIC_SCHEDULE;

end atacms_STATIC SCHEDULERS;

with ATACMS_STATIC_SCHEDULERS; use ATACMS_STATIC SCHEDULERS;
with ATACMS_DYNAMIC _SCHEDULERS; use ATACMS, _DYNAMIC_SCHEDULERS;
with CAPS_HARDWARE_MODEL; use CAPS_HARDWARE_MODEL;

procedure ATACMS is

begin

init_hardware_model;

start_static schedule;

start_dynamic_schedule;

end ATACMS;

91

atacms.asas_op.a

- filename: atacms.asas_op.a

— Created 05 Jun 96, mod 7/29/96;mod 04 Sep 96

—Purpose: This package simulates the operations of the ASAS.

- This module takes the simulate video [array of records], looks for
— targets, prioritizes them, then orders the shooter to fire at them one
-~ atatime.

— compile... ada atacms.asas_op.a

with text_io; usetext_jo;

with target_dataPKG;

with grnd_stat mod_array PKG;
with constants PKG;

with asas_lv_array PKG;

with my_unit PKG;

package asas_op_PKG is

procedure asas_op (target_array4 str: gmd_stat mod_array PKG.grnd_stat mod_array;
gui_in_str: my_unit PKG.my_unit;
fire_cmdl_str : outtarget data PKG.target data);

end asas_op_PKG;

package body asas_op_PKG is

— This array tracks the fired on 'status’ of the targets. This precludes firing a second

- time at the same target

- a'0'indicates no target present and thus has not been fired on (i.e., null status

— a'l'indicates this target is awaiting an available shooter

- a"2'indicates a fire mission has been assigned to this target - future use

— '3 if implemented would indicate the target has been shot at & neutralized - future use
- The array index will be the tgt_num' of the IN parameter

LV_been shot_yet: asas lv_array PKG.asas_Iv_array,

— used to track which targets have been assigned to the the shooter
LV_counter : natural :==1;

- used to hold the last target number (index) examined during the previous running
~ of'this module
LV_holder : natural :=0;

procedure asas_operator_delay is
begin
delay duration(constants PKG.mean_asas_operator_delay); ~temporary;use mean & deviation
—to calculate delay
~(see constants PKG)

end asas_operator_delay;

procedure asas_processing_delay is

begin
delay duration(constants PKG.mean_asas_processing_delay);~-temporary;use mean & deviation
~to calculate delay(see
—constants_PKG)
end asas_processing_delay;
procedure asas_transmission_prep_delay is P
begin
delay duration(constants_PKG.mean_asas_transmission_prep_delay);—~temporary;use mean &
~deviation to calculate

—delay(see constants PKG)
end asas_transmission_prep_delay;

92

procedure asas_error is
begin
null; —insert simulated errors
. end asas_etror;

procedure asas_op (target_array4_str: grd_stat mod_array PKG.gmd_stat mod_array;
gui_in_str: my_unit PKG.my _unit;
fire_crnd1_str : outtarget data PKG:target_data)is

index : natural :=0; - an local index to match the tgt num' of the IN parameter
row : natural := 0;
col : natural := 0;

begin
Put_line("ASAS processing targeting information...");

~ loop thru IN parameter array of records looking for targets.
- Those records with a 'tgt num' are targets
forrow_xin constants PKG.min_array..constants PKG.max_array loop
for column_y in constants PKG.min_array..constants PKG.max_array loop

— only do this (grant it an ‘awaiting shooter’ status) if it does have
- a previously assigned tgt_num AND it hasn't previously been assigned a status
- on a previous trip thru this 'if’ statement
if (target_array4_str(row_x,column_y)tgt num /= 0) AND
(LV_been_shot_yet(target_array4_str(row_x,column_y).tgt num).status = 0) then

~- copy it here for readability below,
index :=target array4_str(row_x.column_y)tgt_num;

- Once you find a target, put it in an ‘awaiting shooter’ status
— and record it's position for later use-
LV_been_shot_yet(index)target class :=

target_array4_str(row_x,column_y).target class;

LV_been_shot_yet(index).status := 1;

LV_been_shot_yet(index).x_val :=row_x;
LV_been_shot_yet(index).y_val := column_y;
LV_been_shot_yet(index).tgt num := index;

—-— for debugg‘ngittttt*
~put("In ASAS 'if, the current tgt_num is ");

~ constants_PKG.int_jo.put(index,0);
—put(" and LV_max tgt num..."); constants PKG.int_jo.put(LV_max tgt num,0);
—new_line;)

end if,
end loop;
end loop;

R EEREERREEERRE R

- Next job is to send the next target to the shooter
- First, simulate prioritizing the current targets
- procedure prioritize(LV_been_shot_yet : in out asas Iv_array PKG.asas_Iv_array);

- Now, only enter this section if the counter below points to a record with a valid target
if LV_been_shot_yet(LV_counter).status /= 0 then

row :=LV_been_shot_yet(LV_counter).x_val;
col := LV_been_shot_yet(LV_counter).y_val;

-- pass target to OUT parameter
fire_cmd1_str.target class :==
target_array4_str(row,col).target _class;
fire_cmd1_str.easting :=
target_array4_str(row,col).easting;
fire_cmdl_str.northing :=
target array4_str(row,col).northing;

93

fire_cmdl_str.alt ==
target_array4_str(row,col).alt;
fire_cmdi_strtgt num :=
target array4_str(row,col).tgt num;
fire_cmdl_str.good_xmission :=
target array4 str(constants PKG.min_array,constants PKG.min_array).good_xmission;
fire_cmdl_str.status :=
LV_been shot_yet(LV_counter).status;
LV_counter :=LV_counter +1; - point to next target in the array

end if,

~THESE ARE PLACEHOLDERS; USE/MODIFY AS NECESSARY
—asas_operator_delay;

—asas_processing_delay;
—asas_transmission_prep_delay;
--asas_efror;

end asas_op;

end asas_op_PKG;

—put("Good xmission so far? ...);
~constants PKG.bool_io.put(target array4 str(constants PKG.min_array,
- constants_PKG.min_array).good_xmission); new_line;

-put("In ASAS, LV_counter... ");
—constants PKG.int_io.put(L'V_counter,0); new_line; — for debugging

94

atacms.choose_inputs.a

- filename: mult weather.choose_inputs.a

~ Authors: Maj George Whitbeck and LCDR David Angrisani
—Date: 6 Aug96

— Project: Thesis - A CAPS Prototype of the ATACMS C3 System
~— Purpose:

— a child bubble of parent "gui_in" from our thesis
~ This file is a candidate for auto code generation in the future.
- Dr Berzin's script doesn't currently generate this but it could

withmy_unit pkg; — provides a type of "Start, Pause, Add_Target, Quit"
with text_io; use text_io;

package choose_inputs_PKG is
procedure choose_inputs(gui_in _str : out my_unit PKG.my_unit);

- procedure "record_input" is used as follows.

— User selects "Start, Pause, Add_Target, or Quit" with mouse.

- Event handler in package "atacms.pan_gui_in_b.a" reads the mouse

— event and makes a procedure call to this procedure. It sends along either
— the words Start, Pause, Add_Target, or Quit".

procedure record_input(gui_in_str : inmy_unit PKG.my_unit);

end choose_inputs_PKG;
with psdl_streams; use psdl_streams;
package body choose_inputs PKG is

T

package gui_in_str_buffer is new sampled_buffer(my_unit PKG.my _unit);
use gui_in_str_buffer;

aaFEEKEEE
- can cut and paste the guts of this for any app, change parameter, etc
procedure choose_inputs(gui_in_str : out my_unit PKG.my_unit) is
begin

- below is from gui_in_str_buffer

buffer.read(gui_in_str),

—put_line("buffer read, in choose_inputs");

end choose_inputs;

wXkERREX
— can cut and paste the guts of this for any app, change parameter, etc
procedure record_input(gui_in_str : inmy _unit PKG.my_unit) IS
begin
~ below is from gui_in_str_buffer
buffer.write(gui_in_str);
—put_line("Buffer write—- in choose_inputs.a, radio button pushed.");

end record_input;

end choose_inputs PKG;

95

atacms.cmds_out.a

— filename: atacms.cmds_out.a

— Authors: Maj George Whitbeck and LCDR David Angrisani
-Date: 6 Aug96

— Project: Thesis - A CAPS Prototype of the ATACMS C3 System

— Purpose: This is the matching ada file for the output items specified
— asaTAE item in panel "gui_out", and as a child bubble of

-~ parent "gui_out"

with text_io; use text_io;
with target data_PKG; —### manually added

package cmds_out_pkg is
procedure cmds_out(gui_out_str: target data PKG-target_data);
end cmds_out_pkg;

with atacms_input_event_monitor_task_pkg;
use atacms_input_event_monitor_task_pkg;
package body cmads_out_pkg is
procedure cmds_out(gui_out_str: target dataPKG.target_data) is

begin
—put_line("about to request a rendezvous... in cmds_out.a ");

atacms_input_event monitor_task.cmds_out_entry(gui_out_str);
—put_line("~“Vust retruned from a rendezvous... in cmds_outa "),

end cmds_out;
end cmds_out_pkg;

96

atacms.cnr_link op.a

~ filename: atacms.cnr_link_op.a

-~ Authors: Maj George Whitbeck and LCDR David Angrisani
—Date: 6 Aug 96;mod 04 Sep 96

— Project: Thesis - A CAPS Prototype of the ATACMS C3 System
- Purpose:

- this comm link will pass on the data 90% of the time.
—In 10% of the transmissions,
- we simulate friction and the mission dies in the network -

~to compile... ada atacms.car_link_op.a

with text_io; use text_io;
with target data PKG;
with global_random_PKG;
with constants_PKG;

package cnr_link op PKG is
procedure cnr_link_op (fire_cmd3_str : intarget data PKGitarget data;
fire_cmd4_str : outtarget_data PKG.target data);
end cnr_link_op_PKG; .

package body cor_link_op PKG is

procedure cnr_link _processing_delay is
begin '
delay duration(constants PKG.mean_cnr_link_processing_delay);—temporary;use mean & deviation to
: ~calculate delay(see constants_PKG)
end cnr_link _processing_delay; .

procedure cor_link _transmission_prep_delay is
begin
delay duration(constants PKG.mean_cnr_link_transmission_prep_delay);~temporary;use mean &
—~deviation to calculate
~delay(see constants PKG)
end cnr_link_transmission_prep_delay;

procedure cnr_link_op (fire_cmd3_str : intarget data PKG.target data;
fire_cmd4_str : out target_data PKGtarget data)is

package flt_io is new float_io(float),
use flt_io;
my_random : float :=0.0;

begin
— below is a way to simulate friction,

my_random := global random PKG.fin_global_random;

ifmy_random > constants PKG.crash_rate then
fire_cmd4_str :=fire_omd3_str;
fire_cmd4_str.good_xmission == false; - setflag
—put_line("Now in procedure 'cnr_link_op' ... crash occured”);
else
fire_cmd4_str := fire_cmd3_str;
~put_line("Now in procedure 'cnr_link_op™);
end if}

97

~THIS SIMULATES THE LATENCY FROM THE CTOC TO SHOOTER
delay 3.0; -

—~THESE ARE PLACEHOLDERS; USE/MODIFY AS NEEDED
—cnr_link_processing_delay;
~cnr_link_transmission_prep_delay;

end cnr_link_op;

end cnr_link_op_PKG;

98

atacms.constants.a

— file: atacms.constants.a

— Authors: Maj George Whitbeck and LCDR David Angrisani
—Date: 6 Aug96

— Project: Thesis - A CAPS Prototype of the ATACMS C3 System
— Purpose: To hold constants that we deemed necessary.

—To create a library: 'a.mklib -i' then choose '1*
~to clear a library: 'a.rmlib’
- compile with... ada atacms.constants.a

withtext_io;
use text_io;
with my_unit PKG;

package constants PKG is

~ to allow i/o for booleans
package bool_io is NEW text_io.Enumeration_jo(Enum => boolean);

- to allow /o for integers
package int_io is new integer_io (integer);

subtype delay_type is float range 0.0..floatlast;
mean_jstars_operator_delay: delay_type:= 5.0;
mean_jstars_processing_delay: delay_type:= 5.0;
mean_jstars transmission_prep_delay: delay type:=5.0;
mean_scdl_link_processing_delay: delay_type:= 5.0;
mean_scdl_link_transmission_prep_delay: delay_type:= 5.0,
mean_grnd_stat mod_operator_delay: delay type:=5.0;
mean_gmd_stat mod_processing_delay: delay_type:=5.0;
mean_grnd_stat mod_transmission_prep_delay: delay type:=5.0;
mean_lanl_link_processing_delay: delay_type:= 5.0;
mean_lanl_link transmission_prep_delay: delay_type:= 5.0;
mean_asas_operator_delay: delay_type:=5.0;
mean_asas_processing_delay: delay_type:=5.0;
mean_asas_transmission _prep_ delay: delay_type:= 5.0;
mean la.n2 link_processing_delay: delay_type:=5.0;
mean_lanz_hnk_msmmlon | prep_delay: delay_type:=5.0;
mean_ctoc_operator_delay: delay_type:= 5.0;
mean_ctoc_processing_delay: delay type:=5.0;
mean_ctoc_transmission_prep _delay: delay type:= 5.0;
mean_cnr_link_processing_delay: delay_type:= 5.0,
mean_cnr, hnk _transmission_prep_delay: delay_type:=5.0;
mean | shooter -_operator_delay: delay type:=5.0;
mean_shooter_processing_delay: delay type:=5.0;
mean_shooter_transmission _prep_delay: delay_type:= 5.0;

subtype deviation is float range 0.0..floatlast;
jstars_operator_deviation: deviation:= 5.0;
jstars_processing_deviation: deviation:= 5.0;
jstars_transmission_prep deviation: deviation:= 5.0;
scdl_link_processing_deviation: deviation:= 5.0;
scdl_lmk_tmnsmxss:on _prep_deviation: deviation:= 5.0;
gmd_stat mod_operator_deviation: deviation:= 5.0;
grd_stat mod_processing_deviation: deviation:= 5.0;
gmd_stat_mod_transmission_prep_deviation: deviation:= 5.0;
lanl_link_processing_deviation: deviation= 5.0;
lanl_link_transmission_prep_deviation: deviation:= 5.0;
asas_operator_deviation: deviation:= 5.0;
asas_processing_deviation: deviation:= 5.0;
asas_transmission_prep_deviation: deviation:= 5.0;

99

lan2_link_processing_deviation: deviation:= 5.0;
lan2_link_transmission _prep_deviation: deviation:= 5.0;
ctoc_operator_deviation: deviation:=5.0;
ctoc_processing_deviation: deviation:= 5.0; -
ctoc_transmission_prep _deviation: deviation:= 5.0;
cnr_link_processing_deviation: deviation:= 5.0,
cnr_link_transmission_prep_deviation: deviation:= 5.0;
shooter_operator_deviation: deviation:=5.0;
shooter_processing_deviation: deviation:= 5.0;
shooter_transmission _prep_deviation: deviation:= 5.0;

min_array : constant integer := 100; - the min array index

max_array : constant integer := 110; — the max array index

thousand : constant integer := 1000; — represents magic number of 1000

crash_rate :constantfloat :=0.9; - the percent of successful transmissions
max_new_tgts : constant integer :==8; - the number of new target detections each cycle

end constants_PKG;

100

atacms.ctoc_op.a

- filename: atacms.ctoc_op.a

~ Authors: Maj George Whitbeck and LCDR David Angrisani
-Date: 6 Aug 96;modofied 04 Sep 96

— Project: Thesis - A CAPS Prototype of the ATACMS C3 System
—Purpose: This package simulates the operations of the CTOC.
- Their function in this abstraction is nil. They simply send

~ offthe fire mission to the shooter .

- compile.. ada atacms.ctoc_op.a

withtext_io; use text_io;
with target_data_PKG;
with constants_PKG;
package ctoc_op_PKG is

procedure ctoc_op (fire_cmd2_str: target data PKGtarget data;
fire_cmd3_str: outtarget _data PKG:target data);

end ctoc_op_PKG;

package body ctoc_op_PKG is

procedure ctoc_operator_delay is
begin
delay duration(constants PKG.mean_ctoc_operator_delay); ~temporary;use mean & deviation
~to calculate delay
~(see constants PKG)
end ctoc_operator_delay;

procedure ctoc_processing_delay is

begin
delay duration(constants PKG.mean_ctoc_processing_delay);~temporary;use mean & deviation
—to calculate delay(see
—constantsPKG)

end ctoc_processing_delay;

procedure ctoc_transmission_prep_delay is
begin
delay duration(constants PKG.mean_ctoc_transmission_prep_delay);~temporary;use mean &
—deviation to calculate
—delay(see constants_PKG)
end ctoc_transmission_prep_delay;
procedure ctoc_error is
begin
null; ~insert simulated errors
end ctoc_error;

procedure ctoc_op (fire_cmd2_str: target data PKG.target data;
fire_cmd3_str : out target data PKGutarget_data) is

begin

fire_cmd3_str := fire_cmd2_str;
—Put_line("Now in procedure “ctoc_op™);

101

~THESE ARE PLACEHOLDERS; USE/MODIFY AS NECESSARY
—ctoc_operator_delay;
—ctoc_processing_delay;
~ctoc_transmission_prep_delay;
-ctoc_error;

end ctoc_op;

end ctoc_op_PKG;

102

atacms.event_task.a

~ filename: atacms.event _task.a

~ Authors: Maj George Whitbeck and LCDR David Angrisani
—~Date: 6 Aug96

-- Project: Thesis - A CAPS Prototype of the ATACMS C3 System
- Purpose: The wrapper task to provide mutual exclusion

- for calls from the prototype to TAE.

withtarget data PKG; ~######H# we added this
with text_io; use text_io;

package atacms_input_event_monitor_task_pkg is
task atacms_input_event_monitor_task is
entry input_event_monitor_entry;
entry cmds_out_entry(gui_out_str: target _data PKG:target data);
end atacms_input_event_monitor_task;
end atacms_input_event_monitor_task_pkg;

with panel_gui_out;

with generated tae_input_event monitor_pkg;
package body atacms_input_event_monitor_task_pkg is

task body atacms_input_event_monitor_task is

begin

accept input_event_monitor_entry do
-put_line("@RRAAAQAQ@@ in 'event_task.a', now accepting an INPUT™);
gen tae_input_event_monitor_pkg.generated_tae_input event_monitor;

~put_line("@@QAQ@@Q@@@ in 'event_task.a', now returning from an INPUT™);

end input_event_monitor_entry;
or
accept cmds_out_entry(gui_out_str: target data PKG.target_data) do
—put_line("%%%%%%%% in 'event_task.a', now accepting an OUTPUT");
panel_gui out.cmds_out(gui_out_str);
—put_line("%%%%%%%% in 'event_task.a’, now returning from an OUTPUT"),

end cmds_out_entry;
end select;
end loop;)
end atacms_input_event monitor_task;
end atacms_jnput_event_monitor_task_pkg;

103

atacms.glebal_b.a

— filename: atacms.global_b.a

— Authors: Maj George Whitbeck and LCDR David Angrisani

~Date: 6 Aug 96

— Project: Thesis - A CAPS Prototype of the ATACMS C3 System

— Purpose: This TAE generated file is handy for adding a quit button to CAPS prototypes

— 3** TAE Plus Code Generator version V5.3 [Merge Token: DO NOT DELETE.]
- *¥* File: global_b.a
- *** Generated: Jul 30 13:48:56 1996

-~ * Global ~ Package BODY

*

package body Global is

—~| NOTES: (none)

-

~| REGENERATED:

~| This file is generated only once. Therefore, you may modify it without
~| impacting automatic code merge.

—| CHANGE LOG:
~]30-Jul-96 TAE Generated

Is_Application_Done : Boolean := FALSE;

-~ . Application_Done - Subprogram BODY

function Application_Done
return Boolean is

—| NOTES: (none)

begin —~ Application_Done
retumn Is_Application_Done;

end Application_Done;

— . Set_Application_Done - Subprogram BODY

procedure Set_Application_Done is

—| NOTES: (none)

begin - Set_Application _Done
Is_Application_Done := TRUE;

end Set_Application_Done; .

end Global;

104

atacms.global_random.a

~ filename "atacms.global_random.a"

- Authors: Maj George Whitbeck and LCDR David Angrisani

-Date: 6 Aug96

— Project: Thesis - A CAPS Prototype of the ATACMS C3 System

~ Purpose: A random number generator. A call to this function returns a
- real number from 0.0 to 1.0

- original code from Prof Shing, modified by Maj Whitbeck
—6/12/96

- to compile "ada filename" ... "ada global_random.a"

with CALENDAR;
use CALENDAR;

package global_random PKG is
subtype Global_Random_Number is Float range 0.0..1.0;

function fin_global_random return Global_Random_Number;
—returns a random number between 0.0 and 1.0

end global_random_ PKG;

package body global_random PKG is

Seed_Is Not_Initialized : Boolean := True;
Max_Seed_Value : constant Natural ;= 3**9;
Seed : Natural ;= 0;
Does_Not_Matter : constant Natural := $%*7;

procedure Initialize Seed is
—initializes seed value by using clock time, so that at each run of the
~package, a different set of numbers are created

begin
while (Seed mod 2) = 0 loop
Seed := (Natural (Seconds(Clock))) mod Max_Seed_Value;
end loop;
end Initialize Seed;

function fin_global_random return Global_Random_Number is
begin

if Seed_Is_Not_Initialized then Initialize Seed;

Seed_Is Not_Initialized := False;

end if;

Seed := (Seed * Does_Not_Matter) mod Max_Seed_Value;

return (Float(Seed) / Float(Max_Seed_Value));
end fin_global random; .

end global_random_PKG;

105

atacms.global s.a

- Authors: Maj George Whitbeck and LCDR David Angrisani
~Date: 6 Aug 96
- Project: Thesis - A CAPS Prototype of the ATACMS C3 System

- Purpose:

~— ¥** TAE Plus Code Generator version V5.3 [Merge Token: DO NOT DELETE.]
— *** File: global_s.a
— *¥*% Generated: Jul 30 13:48:56 1996

— ¥

— * Global — Package SPEC

*x

with X_Windows;
with Text_IO;
with TAE;
package Global is
~| PURPOSE:
—| This package is automatically "with"ed in to each panel package body.
—| You can insert global variables here.
~| INITIALIZATION EXCEPTIONS: (none)
—~| NOTES: (none)
-
~| REGENERATED:
~| This file is generated only once. Therefore, you may modify it without
~| impacting automatic code merge.
=
~| CHANGE LOG:
~{30-Jul-96 TAE Generated
package Taefloat_IO is new Text 10.Float IO (TAE.Taefloat);

Default_Display Id : X_Windows.Display;

- Application_Done ~ Subprogram SPEC

function Application_Done
return Boolean;

—| PURPOSE:

—| This function returns true if a "quit" event handler has called
—| Set_Application_Done, otherwise it returns false.

- .

—~| EXCEPTIONS: (none)

:| NOTES: (none)

-~ . Set_Application Done - Subprogram SPEC

106

procedure Set_Application_Done;

—| PURPOSE:
—| This procedure can be used by an event handler, typically a "quit"
~| button, to signal the end of the application.

~| EXCEPTIONS: (none)

~| NOTES: (none)

end Global;

107

atacms.grnd_stat_mod_array.a

— filename: atacms.grnd_stat_mod_array.a

— Authors: Maj George Whitbeck and LCDR David Angrisani
—Date: 6 Aug96

— Project: Thesis - A CAPS Prototype of the ATACMS C3 System
— Purpose:

— to just compile type... ada atacms.grnd_stat mod_array.a

with text_io;
use text_io;
with constants PKG;

package gmd_stat mod_array_PKG is

~THIS SECTION CONTAINS grnd_stat mod_array, which is the type for the
- output stream for gmd_stat mod_op and lanl_link _op and the
— input stream for lan1_link_op and asas_op

—to create legal entries for the UTM coordinate system
subtype east_coord is integer range 0..999_999;
subtype north_coord is integer range 0..9_999_999;
subtype alt_coord is integer range -1000..10_000;

type grd_stat_mod_array record is record
target_class: integer:=0;
easting : east_coord :=0;
northing : north_coord := 0;
alt: alt_coord :=0;
tgt_num : natural := 0;
good_xmission : boolean := true;
status : natural :=0;

end record;

type gmd_stat mod_array is array(constants_PKG.min_array..constants PKG.max_array,
constants_PKG.min_array..constants PKG.max_array)
of grnd_stat mod_array record;

end grnd_stat mod_array_PKG;

108

atacms.grnd_stat_mod_op.a

- filename: atacms.gmd stat mod_op.a

- Authors: Maj George Whitbeck and LCDR David Angrisani

~ Created 05 Jun 96, mod 7/29/96; MOD 04 SEP 96

— Project: Thesis - A CAPS Prototype of the ATACMS C3 System

- Purpose: This package simulates the operations of the

— ground station. Inthe ground station, the video is analyzed and target locations

— are determined. In this prototype, each target coming in is given a simulated

— location (see below). This station also assigns a unique target number to each target.

-~ compile... ada atacms.grnd_stat_mod_op.a

with text_io; use text_io;

with gmd_stat mod_array PKG;
with jstars_array PKG;

with constants PKG;

with global_random_PKG;

package grnd_stat_mod_op_PKG is

procedure grmd_stat_mod_op i
(target_array2_str: jstars_array PKG.jstars_array;
target array3_str: out gmd stat mod_array PKG.grnd_stat_mod_array);

end gmd stat_mod_op_PKG;

package body gmd_stat mod_op_PKG is

~ This array has a memory due to its position in this package

— Used to store and manipulate similated info before dumping its

— contents into the OUT parameter.

LV_target array: gmd stat mod array PKG.gmd_stat_mod array;

- this will record a unique serial number for each target identified
LV_tgt num : natural :=0;

procedure gmd_stat mod_operator_delay is
begin
delay duration(constants_PKG.mean_gmd stat mod_operator_delay); ~temporary;use mean & deviation
~to calculate delay
—(see constants_PKG)
end grnd_stat mod_operator_delay;

procedure grnd_stat mod_processing_delay is

begin
delay duration(constants_ PKG.mean_gmd_stat mod_processing_delay);~temporary;use mean & deviation
~to calculate delay(see
—constants_PKG)
end grnd stat mod_processing_delay;
procedure grmd_stat mod_transmission_prep_delay is
begin
delay duration(constants PKG.mean gmd_stat_mod_transmission_prep_delay);~temporary;use mean &
~deviation to calculate

~delay(see constants PKG)
end grnd _stat mod_transmission_prep_delay;

109

procedure gmd_stat_mod_error is
begin

null; —insert simulated errors
end grnd_stat_mod_error;

procedure gmd_stat mod_op
(target_array2 str: jstars array PKGjstars_array;
target array3_str: out grnd_stat mod array PKG.gmd_stat_mod_array) is

package flt_io is new float_io(float);
use flt_io;
my_random : float := 0.0;

easting : natural := 0;

northing : natural := 0;

alt :natural :=0;

begin
~-Put_line("Now in procedure "gmd_stat mod_op™);

~put("Good xmission so far? ... ");
—constants_PKG.bool_io.put(target_array?_str(constants PKG.min_array,
- constants PKG.min_array).good_xmission); new_line;

-- Step thru the video (array of records)
for row_x in constants_PKG.min_array..constants PKG.max_array loop
for column_y in constants PKG.min_array..constants_PKG.max_array loop

— If a new target exists, determine its location.
~ It's new only if there is a reflection there and you
— haven't seen it before.
if (target array2_str(row_x,column_y).target_class /=0) AND
(LV_target array(row_x.column_y)tgt num = 0) then

my_random := global_random PKG.fin_global_random;
- now ensure the correct bounds for the random number

— to make the grid coordinate a realistic number
while ((my_random < 0.1) or (my_random > 0.9)) loop

my_random := global random_PKG.fin_global_random;

end loop;

— Our way of assigning grid coordinates to the newly acquired target.
easting == integer(100000.0 * my_random);

northing := 100000 - easting,

alt == integer(100.0 * my_random);

— now transfer to information to local video

LV _target array(row_x.column_y)target class :=

target_array2_str(row_x,column y).target class;

LV_target array(row_x,column_y).easting := easting;
LV _target_array(row_x,column_y).northing := northing;
LV_target array(row_xcolumn_y).alt := alt;
LV_tgt num:=LV _tgt num+ 1; — create a new target number***
LV_target array(row_x.column_y).tgt num :=LV_tgt num;

else
- no target here, just pass on info
LV_target array(row_xcolumn_y)target class :=
target array2_ str(row_x,column_y).target class; -
end if]

end loop;
end loop;

110

~THESE ARE PLACEHOLDERS; USE/MODIFY AS NECESSARY
-grnd_stat mod_operator_delay;
—gmd_stat mod_processing_delay;
—grnd_stat_mod_transmission_prep_delay;
—~grnd_stat_mod_error;

- pass on the transmission status, it does not get affected here
LV_target_array(constants_PKG.min_array,constants PKG.min_array).good_xmission :=
target_array?_str(constants PKG.min_array,constants PKG.min_array).good_xmission;

—~now do a direct copy to the OUT parameter
target array3 str:=LV_target array;

end grnd_stat_mod_op;

end grnd_stat_ mod_op_PKG;

—constants PKG.int_io.put(easting,0);
—Pm(" & ");

~constants PKG.int_io.put(northing,0);
—put(" & "),
—constants_PKG.int_io.put(alt,0);

—put(" &tgt numis ");
—~constants_PKG.int_io.put(LV_tgt num,0);
—new_line(2);

— Put("Now in procedure ‘grnd_stat_mod_op ', just gota ");
~ constants PKG.int_io.put(target array2 str(row_x,column_y)target class,0);
- new_line;

_put("ttttttt**** row and 001 are n),

- constants_PKG.int_io.put(row_x,0);

~put(" & "),
—constants_PKG.int_io.put(column_y,0); new_line;
—constants PKG.int_io.put(easting,0);

—put(” & ")
~constants_PKG.int_io.put(northing,0);

_pm(" & ");

—constants_PKG.int_io.put(alt,0);

—new_line;

- put("A random number is *');
- put(my random,1,3,0); new_line; -

—target array3_str.easting := target array2_str(100,100).target _class;

111

atacms.gui_input_event_monitor.a

- filename: atacms.gui_input_event_monitor.a

— Authors: Maj George Whitbeck and LCDR David Angrisani

—Date: 6 Aug 96

— Project: Thesis - A CAPS Prototype of the ATACMS C3 System

— Purpose: This comes from Dr Berzin's design for the multi-file approach to caps.

- "gui_input_event_monitor” is 2 child bubble with no streams. It is embedded in the
— parent "gui_in". It's only purpose is to request a rendezvous with the event monitor
- in file "atacms.event_task.a" :

withtext_io; use text_io;

package gui_input_event_monitor_pkg is
procedure gui_input_event_monitor;
end gui_input_event_monitor_pkg;

with atacms_input_event_monitor_task pkg;
use atacms_input_event_monitor_task pkg;
package body gui_input_event_monitor_pkg is
procedure gui_input_event_monitor is
begin
—put_line("about to request 2 rendezvous... in gui_input_event_monitor.a ");
atacms_input_event_monitor_task.input_event_monitor_entry;
end gui_input_event_monitor;
end gui_input_event_monitor_pkg;

112

atacms.jstars_array.a

— filename: atacms.jstars_array.a

— Authors: Maj George Whitbeck and LCDR David Angrisani

—Date: 6 Aug96

— Project: Thesis - A CAPS Prototype of the ATACMS C3 System

— Purpose: This file is where we declare an array to simulate jstars output video
- that we use as a stream.

~to just compile type... ada atacms.jstars_array.a

with text_jo;
use text_io;
with constants_PKG;

package jstars_array PKG is

~THIS SECTION CONTAINS jstars_array, which is the type for the
- output stream for jstars_op.a, the input/output stream for scdl_link_op.a,
— and the input stream for grnd_stat_mod_op.a

~to create legal entries for the UTM coordinate
subtype east_coord is integer range 0..999_999;
subtype north_coord is integer range 0..9_999 999;
subtype alt_coord is integer range -1000..10_000;

type jstars_array_record is record
target_class: integer:=0;

easting : east_coord := 0;
northing : north_coord := 0;
tgt_num : natural :=0;
good_xmission : boolean := true;
status : natural := 0;

end record;
type jstars_array is array(constants PKG.min_array..constants PKG.max_array,

constants PKG.min_array..constants PKG.max_array)
of jstars_array record;

end jstars_array PKG;

113

atacms.jstars_op.a

— filename: atacms.jstars_op.a

— Authors: Maj George Whitbeck and LCDR David Angrisani
—Date: 6 Aug 96l; modified 04 Sep 96

— Project: Thesis - A CAPS Prototype of the ATACMS C3 System

~Purpose: This package simulates the operations of the JSTARS Platform
— It collects emmisions, creates the digital video and transmits it to the ground station

withtext_io; use text_io;

with target_emitter_array_PKG;
with jstars_array PKG;

with constants PKG;

with my_unit PKG;

package jstars_op PKG is

procedure jstars_op (emission_str : target_emitter_array PKG.target emitter array;
gui_in_str : my unit PKG.my_unit;
target arrayl_str: out jstars_array PKG.jstars_array);

—procedure jstars_operator_delay (mean_jstars_operator_delay: in operator_delay);

end jstars_op_PKG;

package body jstars_op_PKG is

procedure jstars_operator_delay is
begin
delay duration(constants_PKG.mean _jstars_operator_delay); ~temporary;use mean & deviation to
~calculate delay(see constants_PKG) '
end jstars_operator_delay;

procedure jstars_processing_delay is
begin
delay duration(constants_PKG.mean_jstars_processing_delay),—~temporary;use mean & deviation to
~calculate delay(see constants PKG)

end jstars_processing_delay;

procedure jstars_transmission_prep_delay is

begin
delay duration(constants_PKG.mean_jstars_transmission_prep_delay);—~temporary;use mean & deviation
~to calculate delay(see
-constants_PKG)

end jstars_transmission_prep_delay;

procedure jstars_error is

begin
null; -insert simulated errors

end jstars_error;

procedure jstars_op (emission_str : target emitter array PKGitarget emitter_array;
gui_in_str: my_unit PKG.my_unit;
target arrayl_str: outjstars_array PKGjstars_array) is

114

begin

put_line("JSTARS receiving radar reflections, resolving duplications, and transmitting video...");
forrow_xin constants PKG.min_array..constants PKG.max_array loop

for. column_y in constants PKG.min_array..constants_PKG.max_array loop
- one for one copy of in to out in this abstraction
target_arrayl_str(row_x,column_y).target class:=
emission_str(row_x,column_y).target class;

end loop;
end loop;

--THESE ARE PLACEHOLDERS; USE/MODIFY AS NEEDED
—jstars_operator_delay;
—jstars_processing_delay;
~jstars_transmission_prep_delay;
—jstars_error;
end jstars_op;

end jstars_op_PKG;

115

atacms.lanl_link op.a

~ filename: atacms.lanl_link op.a

- Authors: Maj George Whitbeck and LCDR David Angrisani
—~Date: 6 Aug 96;modified 04 Sep 96

- Project: Thesis - A CAPS Prototype of the ATACMS C3 System
- Purpose:

— this comm link will pass on 90% of traffic and corrupt 10%

—to compile type... ada atacms.lanl_link op.a

withtext_io; use text io;

with global_random PKG;

with grnd_stat mod_array PKG;
with constants PKG;

package lanl_link op_PKG is

procedure lanl_link_op
(target_array3_str: in grnd_stat mod_array PKG.grnd_stat mod_array;
target_array4_str: out grnd_stat mod_array PKG.grnd_stat mod_array);

end lanl_link op_PKG;

package body lanl_link op PKGis

procedure lanl_link processing_delay is
begin
delay duration(constants_ PKG.mean_lanl_link processing_delay);—temporary;use mean & deviation to
—calculate delay(see constants_PKG)
end lanl_link processing_delay;

procedure Janl_link_transmission prep delay is

begin
delay duration(constants PKG.mean_lanl_link transmission_prep_delay);~temporary;use mean &
—deviation to calculate
—delay(see constants_PKG)

end lanl_link_transmission_prep_delay;

procedure lanl_link op
(target_array3_str:in grnd_stat mod_array PKG.gmd_stat mod_array;
target array4_str:out grnd_stat mod_array PKG.grnd_stat mod_array) is

package flt_io is new float_io(float);

use flt_io;
my_random : float := 0.0;

begin
—put_line("Now in procedure Tanl_link_op™);
~put("Good xmission so far? ... ");

—constants_PKG.bool_jo.put(target array3_str(constants PKG.min_array,
- constants PKG.min_array).good_xmission); new_line;

- adirect copy of the array of records
target array4 str:= target_array3_str

- below is a way to simulate friction

116

my_random := global random PKG.fin_global_random;
ifmy_random > constants PKG.crash ratethen - simulate crash,put flag in first position
target array4_str(constants_PKG.min_array,constants PKG.min_array).good_xmission
:=-§)allxst‘i;ﬁne("8ﬁu in procedure 'lanl_link_op' ... crash occured");
end if;
~THIS SII\/SJILA'{'%S THE LATENCY FROM THE GROUND STATION MODULE TO ASAS
ay 1.0, .

~THESE ARE PLACEHOLDERS; USE MODIFY AS NEEDED
~lanl_link processing_delay;
~lanl_link_transmission_prep_delay;
end Janl_link op;

end lanl_link op PKG;

117

atacms.lan2_link op.a

- filename: atacms.lan2_link_op.a

- Authors: Maj George Whitbeck and LCDR David Angrisani

—Date: 6 Aug 96;mod 04 Sep 96

~ Project: Thesis - A CAPS Prototype of the ATACMS C3 System

— Purpose: This comm link will now just pass on the data and corrupt 10% of it.

-to compile... ada atacms.lan2_link _op.a

with text_io; use text_io; :
with target data PKG; - to instantiate my record structure
with global random_PKG; — a function to get a random number
with constants_PKG;

package lan2_link_op_PKG is
procedure lan2_link_op (fire_cmd]_str : intarget data PKG.target data;
fire cmd2_str: outtarget data PKG.target data),
end lan2_link_op PKG;

package body lan2_link_op_PKG is

procedure lan2_link_processing_delay is
begin
delay duration(constants_PKG.mean_lan2_link_processing_delay);~temporary;use mean & deviation to
—calculate delay(see constants PKG)
end lan2_link_processing_delay;

procedure lan2_link_transmission_prep_delay is
begin
delay duration(constants PKG.mean_an2_link_transmission_prep_delay);—temporary;use mean &
. ~deviation to calculate
—delay(see constants PKG)

end lan2_link_transmission_prep_delay;

procedure 1an2_link_op (fire_cmd}_str : in target_data PKG.target_data;
fire_cmd2_str: out target data PKG.target_data) is

package flt_io is new float_io(float);
use flt_io;
my_random : float :=0.0;

begin
~put_line("Now in procedure lan2_link_op™);

- a direct copy of record
fire_cmd2_str := fire_cmd1_str;

— below is a way to simulate friction
~ 95% of the time, everything will be fine.
my_random := global random_PKG.fin_global_random;

ifmy_random > constants PKG.crash_ratethen - set flag
fire_cmd2_str.good xmission := false;
~put_line("Still in procedure lan2_link_op' ... crash occured");
end if}

118

~THIS SIMULATES THE LATENCY FROM THE ASAS TO CTOC
delay 1.0;

~THESE ARE PLACEHOLDERS; USE/MODIFY AS NECESSARY
~lan2_link_processing_delay;
~lan2_link transmission prep_delay;
endlan2_link op;

end lan2_link_op_PKG;

119

atacms.my_unit.a

- file: atacms.my_unit.a

- Authors: Maj George Whitbeck and LCDR David Angrisani

- Date: 6 Aug 96

— Project: Thesis - A CAPS Prototype of the ATACMS C3 System

~ Purpose: This file specifies a type which closely matches strings read from a2 TAE
- input panel.

— compile with... ada atacms.my unit.a

with text_10;

package my unit PKG is

type my_unit is (Pause, Go, Add_Target, Quit);

package my_unit_IO is
new text_IO.Enumeration_IO(Enum =>my_unit);

end my_unit_PKG;

120

atacms.pan_gui_in_b.a

— filename: atacms.pan_gui_in_b.a

— Authors: Maj George Whitbeck and LCDR David Angrisani
—Date: 6 Aug96

— Project: Thesis - A CAPS Prototype of the ATACMS C3 System
— Purpose: See comments between merge notes below

~ *** TAE Plus Code Generator version V5.3 [Merge Token: DO NOT DELETE.]
~***File: pan gui in ba :
~ ¥** Generated: Jul 30 13:48:56 1996

.

~ * Panel gui in — Package BODY

*

with TAE; use TAE;

with Text_IO;

with Global;

~ One "with" statement for each connected panel.

~ MERGE NOTE: Add additional "with"s BELOW this line.

- modified by GSW on 7/30/96

— file: "atacms.pan_gui_in_b.a"

~ my mods are noted by "—##H#" below

- this files has an if statement added in the event handler and a few
- with statements

—H
withmy_unit PKG; -- provides the type for the input event
with choose_inputs PKG;

-- MERGE NOTE: Add additional "with"s ABOVE this line.
package body Panel_gui_in is

—| NOTES:

~| For each parameter that you have defined to be "event-generating"” in

| this panel, there is an event handler procedure below. Each handler

~| has a name that is a concatenation of the parameter name and "_Event".

-| Add application-dependent logic to each event handler. (As generated

~{ by the WorkBench, each event handler simply logs the occurrence of

—| the event.)

-

—| For best automatic code merging results, you should put as many

—| modifications as possible between the lines of the MERGE NOTE comments.
~| Modifications outside the MERGE NOTEs will often merge correctly, but
~| must sometimes be merged by hand. If'the modifications cannot be

| automatically merged, a reject file (*.rej) will be generated which

-{ will contain your modifications.

—| REGENERATED:

~| The following WorkBench operations will cause regeneration of this file:
~| The panel's name is changed (not title)

—| For panel: gui_in

-

~| The following WorkBench operations will also cause regeneration:
-] Anitem is deleted

~| Anew item is added to this panel

~| Anitem's name is changed (not title)

~| Anitem's data type is changed

~| Anitem's generates events flag is changed

-| Anitem's valids changed (if item is type string and connected)
~| Anitem's connection information changed

121

~| For the panel items:

—| choose_inputs, header

-

—| CHANGE LOG:

~| MERGE NOTE: Add Change Log entries BELOW this line.
~|30Jul-96 TAE Generated

~| MERGE NOTE: Add Change Log entries ABOVE this line.

- MERGE NOTE: Add additional code BELOW this line.
-~ MERGE NOTE: Add additional code ABOVE this line.

~ . Initialize Panel - Subprogram BODY

procedure Initialize Panel
(Collection_Read
:in TAE.Tae_Co.Collection_Pir) is

—| NOTES: (none)

~ MERGE NOTE: Add declarations for Injtialize_Panel BELOW this line.
- MERGE NOTE: Add declarations for Initialize_Panel ABOVE this line.

begin — Initialize_Panel

Info := new TAE.Tae_Wpt.Event_Context;

Info.Collection := Collection_Read;

TAE.Tae_Co.Co_Find (Info.Collection, "gui_in_v", Info.View);
TAE.Tae_Co.Co_Find (Info.Collection, "gui_in_t", Info. Target);

~ MERGE NOTE: Add code for Initialize_Panel BELOW this line.
— MERGE NOTE: Add code for Initialize_Panel ABOVE this line.

exception

when TAE UNINITIALIZED_PTR =>
Text_10.Put_Line ("Panel_gui_in Initialize Panel: "
& "Collection_Read not initialized.");
raise;
when TAE.Tae_Co.NO_SUCH_MEMBER =>
Text_IO.Put_Line ("Panel_gui_in Initialize Panel: "
& "(View or Target) not in Collection.");
raise; '

end Initialize Panel;

122

= . Create_Panel — Subprogram BODY

procedure Create_Panel
(Panel_State
:in TAE.Tae_Wpt.Wpt_Flags
=TAE.Tac_Wpt. WPT_PREFERRED;

Relative Window
:in X_Windows. Window
=X Windows.Null_Window) is
~| NOTES: (none)

~MERGE NOTE: Add declarations for Create_Panel BELOW this line.
—MERGE NOTE: Add declarations for Create_Panel ABOVE this line.

begin — Create_Panel

if Info.Panel_Id = Tae.Null_Panel_Id then
TAE.Tae_Wpt.Wpt_NewPanel

(Display_Id => Global.Default Display 1d,
Data Vm => Info.Target,
View_Vm => Info. View,

Relative Window =>Relative_Window,
User_Context => Info,

Flags =>Panel_State,
Panel Id => Info.Panel 1d);
else

Text 10.Put_Line ("Panel (gui_in) is already displayed.");
end if,

- MERGE NOTE: Add code for Create_Panel BELOW this line.
- MERGE NOTE: Add code for Create_Panel ABOVE this line.

exception

when TAE.UNINITIALIZED PTR =>
Text_IO.Put_Line ("Panel gui in.Create Panel: "
& "Panel was not initialized prior to creation.");
raise;
when TAE.TAE_FAIL =>
Text_I0.Put_Line ("Panel_gui_in Créate_Panel: "
& "Panel could not be created.");
raise;

end Create Panel;

123

-~ . Connect_Panel — Subprogram BODY

procedure Connect Panel
(Panel_State
- 1in TAE.Tae_ Wpt. Wpt_Flags
:=TAE.Tac_Wpt WPT_PREFERRED;

Relative_Window
:in X_Windows. Window
:=X_Windows.Null_Window) is
-| NOTES: (none)

- MERGE NOTE: Add declarations for Connect_Panel BELOW this line.
- MERGE NOTE: Add declarations for Connect_Panel ABOVE this line.

begin — Connect_Panel

if Info.Panel_Id = Tae.Null_Panel_Id then

Create_Panel
(Relative Window => Relative_Window,
Panel_State => Panel_State);
else

TAE.Tae_Wpt. Wpt_SetPanelState (Info.Panel_Id, Panel_State),
end if

- MERGE NOTE: Add code for Connect_Panel BELOW this line.
- MERGE NOTE: Add code for Connect_Panel ABOVE this line.

exception
when TAE.Tae Wpt. BAD_STATE =>

Text_IO.Put_Line ("Panel_gui_in Connect_Panel: "
& "Invalid panel state."),

raise;

end Connect_Panel;

124

- Destroy_Panel — Subprogram BODY

procedure Destroy_Panel is
~| NOTES: (none)

- MERGE NOTE: Add declarations for Destroy_Panel BELOW this line.
—MERGE NOTE: Add declarations for Destroy_Panel ABOVE this line.

begin — Destroy_Panel
TAE.Tae_Wpt.Wpt_PanelErase(Info.Panel_1d);

—MERGE NOTE: Add code for Destroy_Panel BELOW this line.
- MERGE NOTE: Add code for Destroy_Panel ABOVE this line.

exception

when TAE.Tae Wpt BAD_PANEIL _ID =>
Text_IO.Put_Line ("Panel_gui_in.Destroy_Panel: "
& "Info.Panel Id is an invalid id.");
raise;
when TAE.Tae_Wpt.ERASE_NULL_PANEL =>
— This panel has not been created yet, or has already been destroyed.
— Trap this exception and do nothing.
nuli;

end Destroy_Panel;

125

F 0T SC UL NOU L N T S S T T T O O 100 SO0 SO0 B T S U0 NS WO W00 WO B
LIS It i LONL B A B 00 B e B B B B B e 2

~ begin EVENT HANDLERS

~ . choose_inputs_Event - Subprogram SPEC & BODY

procedure choose_inputs_Event
(Info : in TAE.Tac_Wpt.Event_Context Ptr) is

-] PURPOSE:
—~| EVENT HANDLER. Insert application specific information.

_f
—| NOTES: (none)

Value : array (1..1) of String (1. TAE.Tae_Taeconf STRINGSIZE);
Count : TAE.Taeint;

—MERGE NOTE: Add declarations BELOW this line for parm: choose_inputs.
—MERGE NOTE: Add declarations ABOVE this line for parm: choose_inputs.

begin — choose_inputs_Event

TAE.Tae_Vm.Vm Extract Count (Info.Parm_Ptr, Count);
if Count > 0 then

TAE.Tae_Vm.Vm_Extract SVAL (Info.Parm_Ptr, 1, Value(1));
end if,

—MERGE NOTE: Add code BELOW this line for parm: choose_inputs.
i .
— There are 4 possible input choices... Run, Pause, Add 5 Targets, or Quit
- Text_IO.put_line("...in pan_gui_in....");

- begin running or restarting the prototype

if (tac_misc.s_equal(value(1), "Run")) then
Text_IO.put_line("User selected Run™);
choose_inputs PKG.record_input(my_unit PKG.Go);

~ pause running the prototype

elsif (tae_misc.s_equal(value(1), "Pause™)) then
Text_IO.put_line("User selected Pause™);
choose_inputs_PKG.record_input(my_unit_PKG.Pause);

—add targets to the target array
elsif (tae_misc.s_equal(value(1), "Add Targets")) then

Text_IO.put_line("User selected 'Add Targets™);
choose_inputs_PKG.record_input(my_unit PKG.Add_Target);

elsif (tae_misc.s_equal(value(1), "Quit")) then
Text_IO.put_line("User selected 'Quit’, program shutting down...");
global.Set_Application_Done; — This will set 2 "done" flag to true
choose_inputs_PKG.record_input(my_unit PKG.Quit);

else
Text_IO.Put_line("Error in atacms.pan_gui_in_b.a, unknown selection");

end if,

— MERGE NOTE: Add code ABOVE this line for parm: choose_inputs.

end choose_inputs_Event;

126

~ . header Event — Subprogram SPEC & BODY

procedure header_Event
(Info : in TAE.Tac_Wpt.Event_Context_Ptr) is

~| PURPOSE:
~| EVENT HANDLER. Insert application specific information.

:[NOTES: (none)

Value : array (1..1) of String (1..TAE.Tae_Taeconf. STRINGSIZE);
Count : TAE.Taeint;

~ MERGE NOTE: Add declarations BELOW this line for parm: header.
—MERGE NOTE: Add declarations ABOVE this line for parm: header.

begin — header_Event
TAE.Tae_Vm.Vm_Extract Count (Info.Parm_Pir, Count);
if Count > 0 then
TAE.Tae_Vm.Vm_Extract SVAL (Info.Parm_Ptr, 1, Value(1));
end if}

—MERGE NOTE: Add code BELOW this line for parm: header.
—MERGE NOTE: Add code ABOVE this line for parm: header.

end header_Event;

127

— end EVENT HANDLERS

- . Dispatch_Item - Subprogram BODY

procedure Dispatch_Item
(User_Context_Pitr: in TAE.Tac_Wpt.Event_Context Pir) is

| NOTES: (none)
begin — Dispatch_Item
if TAE.Tae_Misc.s_equal ("choose_inputs”, User_Context_Ptr.Parm_Name) then
choose_inputs_Event (User_Context_Ptr);
elsif TAE.Tae_Misc.s_equal ("header", User_Context_Ptr.Parm Name) then
header_Event (User_Context_Ptr);
end if;
end Dispatch_Jtem;
- MERGE NOTE: Add additional code BELOW this line.
— MERGE NOTE: Add additional code ABOVE this line.

end Panel_gui_in;

128

atacms.pan_gui_in_s.a

~ filename: atacms.pan_gui_in s.a

~ Authors: Maj George Whitbeck and LCDR David Angrisani
~Date: 6 Aug 96

— Project: Thesis - A CAPS Prototype of the ATACMS C3 System
-- Purpose:

— *** TAE Plus Code Generator version V5.3 [Merge Token: DO NOT DELETE.]
—~***File: pan gui in sa
— **¥ Generated: Jul 30 13:48:56 1996

- %

- * Panel gui in — Package SPEC
*

with TAE;
with X_Windows;

package Panel_gui_inis

~| PURPOSE:

| This package encapsulates the TAE Plus panel: gui_in

~| These subprograms enable panel initialization, creation, destruction,
—| and event dispatching. For more advanced manipulation of the panel
~| using the TAE package, the panel's Event_Context (Info) is provided.
| It includes the Target and View (available after initialization)

~| and the Panel Id (available after creation).

-1

~| INITIALIZATION EXCEPTIONS: (none)
-~ NOTES: (none)
-| REGENERATED:)
~| The following Workbench operations will cause regeneration of this file:
~| The panel's name is changed (not title)
—| For panel: gui_in
~| CHANGE LOG:
~|30-Jul-96 TAE Generated
Info : TAE.Tae_ Wpt.Event_Context_Ptr; - panel information

- . Initialize Panel ~ Subprogram SPEC

procedure Initialize Panel
(Collection_Read — TAE Collection read from
:in TAE.Tae_Co.Collection_Ptr); - resource file

—~| PURPOSE:

~| This procedure initializes the Info.Target and Info.View for this panel

~| EXCEPTIONS:

~ TAE.UNINITIALIZED_PTR is raised if Collection_Read not initialized
~{ TAE.Tae_Co.NO_SUCH_MEMBER is raised if the panel is not in

~| Collection_Read

~| NOTES: (none)

129

-~ . Create Panel — Subprogram SPEC

procedure Create Panel
(Panel_State — Flags sent to Wpt_NewPanel.
:in TAE.Tae Wpt. Wpt_Flags
:=TAE.Tac_Wpt. WPT_PREFERRED;

Relative_Window - Panel origin is offset from
:inX_ Windows. Window - this X Window. Null Window
=X Windows Null Window); — uses the root window.

-| PURPOSE:

~| This procedure creates this panel object in the specified Panel_State
~| and stores the panel Id in Info.Pane!_Id.

-~ EXCEPTIONS:

-| TAE.UNINITIALIZED_PTR is raised if the panel is not initialized
~| TAE.TAE_FAIL is raised if the panel could not be created

-1

~| NOTES: (none)

- Connect_Panel - Subprogram SPEC

procedure Connect_Panel
(Panel_State
:in TAE.Tae Wpt. Wpt Flags
:=TAE.Tae_Wpt. WPT_PREFERRED;

Relative_Window - Panel origin is offset from
{inX_Windows. Window —this X Window. Null_Window
=X _Windows.Null Window); — uses the root window.

~| PURPOSE:

~| If this panel doesn't exist, this procedure creates this panel object
~| in the specifiec Panel_State and stores the panel Id in

~| Info.Panel Id.

~| If this panel does exist, it is set to the specified Panel_State.

~| Inthis case, Relative_Window is ignored.

-

—~| EXCEPTIONS: '

—| TAE.UNINITIALIZED_PTR is raised from Create_Panel if the panel is
~| not initialized)

-| TAE.TAE_FAIL is raised from Create_Panel if the panel could not be
—| created

~| TAE.Tac_Wpt. BAD_STATE is raised if the panel exists and the

~| Panel_State is an invalid state

-| NOTES: (none)

— . Destroy_Panel — Subprogram SPEC

procedure Destroy_Panel;

—| PURPOSE:

—| This procedure erases a panel from the screen and de-allocates the

~| associated panel object (not the target and view).

-

~| EXCEPTIONS:

- TAE.Tac_Wpt BAD_PANEL ID is raised if Info.Panel_Id is an invalid id.

130

-

—|NOTES:

~| Info.Panel_Id is set to TAENULL_PANEL _ID, and should not referenced
~| in any Wpt call until it is created again.

~ . Dispatch_Item -- Subprogram SPEC

procedure Dispatch _Item
(User_Context Ptr ~ Wpt Event Context for a PARM
:in TAE.Tae_Wpt.Event_Context_Ptr); - event.

—| PURPOSE:
~| This procedure calls the Event Handler specified by User_Context_Ptr

~| EXCEPTIONS:
—| Application-specific

—| NOTES: (none)

end Panel_gui_in;

131

atacms.scdl_link op.a

— filename: atacms.scdl_link_op.a

~ Authors: Maj George Whitbeck and LCDR David Angrisani

—Date: 6 Aug 96;modified 04 Sep 96

— Project: Thesis - A CAPS Prototype of the ATACMS C3 System

- Purpose: This comm link will pass on 90% of traffic and corrupt 10% due to
- simulated friction

—to compile type... ada atacms.scdl_link _op.a

with text_io; use text_io;
with global_random PKG;
with jstars_array_PKG;
with constants PKG;

package scdl_link_op_PKG is

procedure scdl link op
(target_arrayl_str: injstars array PKG.jstars_array;
target array2_str: out jstars_array PKG.jstars_array);

end scdl_link_op_PKG;

package body scdl_link_op_PKG is

procedure scdl_link_processing_delay is
begin
delay duration(constants_PKG.mean scdl_link processing_delay);—temporary;use mean & deviation to
~calculate delay(see constants PKG)
end scdl_link processing_delay; :

procedure scdl_link_transmission_prep_delay is
begin
delay duration(constants PKG.mean _scdi_link_transmission_prep_delay);~temporary;use mean &
~—deviation to calculate
~delay(see constants_PKG)

end scdl_link _transmission_prep _delay;

procedure scdl_link_op
(target_arrayl_str:injstars_array PKG.jstars_array,
target_array?2_str : out jstars_array PKG.jstars_array) is

package flt_io is new float_io(float),
use flt_io;
my_random : float := 0.0;

begin
—put_line("Now in procedure 'scdl_link_op™);
—put("Good xmission so far? ... ");
~constants PKG.bool_io.put(target_arrayl_str(constants PKG.min_array,
- constants PKG.min_array).good_xmission); new_line;

- a direct copy of the array of records
target array2 str:= target arrayl_str;

— below is simulated error; error types not defined
my_random := global_random_PKG.fin_global_random;

if my _random > constants PKG.crash_rate then — set flag

target_array2_str(constants_PKG.min_array,constants PKG.min_array).good_xmission:= false;
—put_line("Still in procedure 'scdl_link_op' ... crash occured");

end if}

132

~THIS SIMULATES THE LATENCY FROM JSTARS TO THE GROUND STATION MODULE
delay 3.0;

~THESE ARE PLACEHOLDERS; USE/MODIFY AS NEEDED
-scdl_link_processing_delay;
—scdl_link_transmission_prep_delay;
end scdl_link_op;

end scdl_link_op_PKG;

133

atacms.shooter op.a

— filename: atacms.shooter_op.a

— Authors: Maj George Whitbeck and LCDR David Angrisani
—~Date: 6 Aug 96; modified 04 Sep 96

~ Project: Thesis - A CAPS Prototype of the ATACMS C3 System
—Purpose: This package simulates the operations of the ground

- Command Station

--to compile... ada atacms.shooter_op.a

with text_io; use text_io;
with target_data_PKG;
with constants PKG;

package shooter_op_PKG is

procedure shooter_op (fire_cmd4_str : target data PKGtarget data;
gui_out_str :outtarget data PKG.target data);

end shooter_op_PKG;

package body shooter_op_PKG is

procedure shooter_operator_delay is

begin
delay duration(constants_PKG.mean_shooter_operator_delay); ~temporary;use mean & deviation
—to calculate delay
~—(see constants_PKG)

end shooter_operator_delay;

procedure shooter_processing_delay is

begin
delay duration(constants PKG.mean_shooter_processing_delay);~temporary;use mean & deviation
—to calculate delay(see
~constants_PKG)
end shooter_processing_delay;

procedure shooter_transmission_prep_delay is

begin
delay duration(constants_PKG.mean_shooter_transmission_prep_delay);~temporary;use mean &
~deviation to calculate
~delay(see constants PKG)

end shooter_transmission_prep_delay;

procedure shooter_error is

begin
null; .—insert simulated errors

end shooter_error;

procedure shooter_op (fire_cmd4_str : target_data PKG.target data;
gui_out_str :outtarget data PKG.target data)is

134

begin
put_line("Transmission received by shooter, sending data to display panel. ");

if fire_cmd4_strtgt num =0 then
put_line("Just received a communications check only. No mission assigned. ");

elsif fire_cmd4_str.good_xmission then
put_line("Just received a Good Transmission. *);
put("Mission successfully being fired at Target Number ");
constants PKG.int_io.put(fire_cmd4_stritgt num,0); new_line;

else
put("Detected a crash. Mission lost. Target number ");
constants PKG.int_io.put(fire_cmd4_str.tgt num,0);
put(" was lost.");
end if;
new_line(3);

gui_out_str:=fire cmd4_str;

-~-THESE ARE PLACEHOLDERS; USE/MODIFY AS NECESSARY
-shooter_operator_delay;
—shooter_processing_delay;
~shooter_transmission_prep_delay;
—shooter_error;

end shooter_op;

end shooter_op_PKG;

- target data_PKG.int_jo.put(fire_cmd4_str.easting,0);

135

atacms.target_data.a

~ filename: atacms.target dataa

~ Authors: Maj George Whitheck and LCDR David Angrisani
—Date: 6 Aug 96

- Project: Thesis - A CAPS Prototype of the ATACMS C3 System
- Purpose:

— This file is where I'd like to declare my target data record
—that I will use as a stream in my thesis
- I 'avoided the use clause as much as possible. Also, note naming

— to just compile type... ada atacms.target data.a

with text_io;
use text_io;

package target data PKG is

- to instantiate integer generic
package int_io is new integer_io (integer);

— create enumerated type for artillery method of control

— and allow /o

type method_cntl_type is (WR, AMC, DNL, TOT);,

package cntl_io is new text_io.enumeration_io(method_cntl_type);

- to create legal entries for the UTM coordinate
subtype east_coord is integer range 0..999_999;
subtype north_coord is integer range 0..9_999_999;
subtype alt_coord is integer range -1000..10_000;

type target _data is record
target class: integer:=0;
easting : east_coord :=0;
northing : north_coord := 0;
alt: alt coord :=0;
tgt_num : patural :=0; .
tgt desc : string(1..60) := (others =>™");
method_cntl : method cntl_type := DNL;
good_xmission : boolean := true;
status : natural := 0;

end record,

end target data PKG;

136

atacms.target_emitter_array.a

— filename: atacms.package target emitter_array.a

~ Authors: Maj George Whitbeck and LCDR David Angrisani
—Date: 6 Aug96

- Project: Thesis - A CAPS Prototype of the ATACMS C3 System
— Purpose: This file is where we declare an array to simulate radar
- relections that we will use as a stream in our thesis

~ to just compile type... ada atacms.target_emitter_array.a

withtext_io;
use text_io;
with constants PKG;

package target emitter_array PKG is

—THIS SECTION CONTAINS target emitter_array, which is the type for the
- output stream for target_emitter_op and the
- input stream for jstars_op

- 1o create legal entries for the UTM coordinate system
subtype east_coord is integer range 0..999_999;
subtype north_coord is integer range 0..9_999 999,
subtype alt_coord is integer range -1000..10_000;

type target_emitter_array_record is record
target _class: integer:=0;

easting : east_coord :=0;

northing : north_coord := 0;

tgt num : natural :=0;

good_xmission : boolean := true;

status : natural := 0;

end record,
type target_emitter_array is array(constants PKG.min_array..constants PKG.max_array,

constants PKG.min_array..constants PKG.max_array)
of target emitter_array_record,;

end target_emitter_array_PKG;

137

atacms.target_emitter_op.a

- filename: atacms.target emitter op.a

~ Authors: Maj George Whitbeck and LCDR David Angrisani

—Date: 6 Aug96

— Project: Thesis - A CAPS Prototype of the ATACMS C3 System

— Purpose: This package generates the target emmissions which will be
- detected by the JSTARS platform. This assigns information

- which could be discerned from the sensor itself, in

- this case, a target class is assigned.

- to just compile... ada atacms.target_emitter_op.a

withtext_io; use text_io;

with target_emitter_array PKG; --to instantiate our array of record type
with global_random_PKG;

with constants PKG;

with my_unit PKG;

package target emitter_op_PKG is
procedure target_emitter op
(gui_in_str: my_unit PKG.my_unit;
emission_str : out target_emitter_array PKGarget emitter_array);

end target_emitter_op_PKG;

package body target_emitter_op PKG is

— create a sample emitter array to manipulate
my_target_emitter_array: target_emitter_array PKG.target emitter_array,

procedure target_emitter_op
(gui_in_str : my_unit PKG.my_unit;
emission_str : out target_emitter_array_PKGitarget emitter_array) is

rand_num: natural:=0; - to determine to target class
Iv_int : natural;

row_X : natural := 0;

column_y : natural := 0;

begin

~-put("Now in procedure ‘target _emitter’,");
Iv_int :==my_unit PKG.my_unit'pos(gui_in_str);
~constants PKG.int_io.put(lv_int,0);

new_line;

iflv_int = 2 then

Put_line("Reflections from multiple targets detected.");
for x in 1..constants_PKG.max_new_tgts loop

rand_num := integer(100.0*global_random_PKG.fin_global_random),

row_x := constants PKG.min_array + (integer (l0.0*global__random_PKG.ﬁn _global_random)),
column_y := constants PKG.min_array + rand_num/10; - avoid 3d fin call, reuse rand_num

138

case rand_num is

when 0..50 =>

my target emitter_array(row_x,column_y).target_class:=1;
when 51..60 =>

my_target emitter_array(row_x,column_y).target class:=2;
when 61..70 =>

my_target_emitter_array(row_x.column_y).target class:=3;
when 71..80 =>

my_target emitter_array(row_x,column_y).target class:=4;

when 81..99 =>

my_target emitter_array(row_x.column_y).target class:=5;
when others =>

null;

end case;

end loop;
end if;

emission_str:=my_target_emitter_array; — copy local array to output parameter
end target_emitter_op;
end target_emitter op PKG;
- put("Now in procedure ‘target_emitter", just added a target class of ");

— constants PKG.int_io.put(my target emitter_array(row_x,column_y).target class,0);
—new_line;

139

140

APPENDIX C.

REFINEMENT II GRAPH AND PSDL

141

142

EFL R

Sr6e As7ui NG
nsAen :)
As"yomn do
. Jlomyen
A"yt

surgos

s unssiw

dagjjuwe

As Epwa el

LS ppwsTaiy

do
“Jaajooys

s o nd

As"uf InB

Figure 1. Refinement IT Model - Top Level.

143

124!

‘monelS pueunuo)) pasoduroda(- [SPOIA I Juswsuysy 7 omsig

indino 10dNI

NS Aen

ns"Zomn

n57epwa" 8y

487 1w iy

N8 Zpwa”aly

wexy

NSTEPWo

NS 1IN0 sesy

TYPE grnd_stat_mod_array
SPECIFICATION
END
IMPLEMENTATION ADA gmd stat_mod_array

‘

END

TYPE jstars_array
SPECIFICATION
END
IMPLEMENTATION ADA jstars_array

END

TYPE my_unit
SPECIFICATION
OPERATOR pause
SPECIFICATION
OUTPUT

IMPLEMENTATION ADA my_unit
END

TYPE target_data
SPECIFICATION

END

IMPLEMENTATION ADA target_data

END

TYPE target_emitter_array
SPECIFICATION
END
IMPLEMENTATION ADA target_emitter_array

END

OPERATOR acus_t
SPECIFICATION
INPUT
trwolfl_str : UNDEFINED_TYPE NAME
OUTPUT
trwolf2_str : UNDEFINED_TYPE NAME
MAXIMUM EXECUTION TIME 50 MS
END

OPERATOR asas_op
SPECIFICATION
INPUT
gres_lan2_str : UNDEFINED_TYPE_NAME,
gui_in_str : my_unit,
target array4_str: gmd stat mod_array,
tibs4_str : UNDEFINED_TYPE _NAME
OUTPUT
asas_outl_str : UNDEFINED_TYPE_NAME,
fire_cmdl_str : target data
MAXIMUM EXECUTION TIME 200 MS
END
IMPLEMENTATION ADA asas_op

END

145

OPERATOR atacms
SPECIFICATION
STATES
gui_in_str : my_unit
INTTIALLY
pause
END
IMPLEMENTATION
GRAPH
VERTEX acus_op : 50 MS

VERTEX cnr_link_op : 50 MS
VERTEX command_station_op
VERTEX gres_op : 500 MS
VERTEX gui_in
VERTEX gui_out
VERTEX jstars_op : 500 MS
VERTEX rivet_joint_op : 500 MS
VERTEX scdl_link_op : 50 MS
VERTEX shooter_op : 50 MS
VERTEX target_emitter : 500 MS
VERTEX tibs_op : 50 MS
VERTEX trackwolf _op : 500 MS
VERTEX uav_op : 500 MS
EDGE Target _arrayl_str
jstars_op >
sedl_link_op
EDGE emission_str
target_emitter ->
trackwolf_op
EDGE emission_str
target_emitter ->
gres_op
EDGE emission_str
target emitter ->
rivet_joint_op
EDGE emission_str
target emitter ->
jstars_op
EDGE fire_cmd3_str
command_station_op >
cnr_link _op
EDGE fire_cmd4_str
cnr_link_op ->
shooter_op
EDGE gres_str

gres_op >
command_station_op

EDGE gui_in_str
gui_in->
uav_op

EDGE gui_in_str
gui_in >
rivet_joint_op

EDGE gui_in_str
gui_in->
gres_op

EDGE gui_in_str
gui_in->
trackwolf op

EDGE gui_in_str
gui_in >
target emitter

EDGE gui_in_str
gui_in ->
jstars_op

EDGE gui_in_str
gui_in->
command_station_op

EDGE gui_out_str
shooter_op ->
gui_out

EDGE target_array2_str
scdl_link_op ->
command_station_op

CONTROL CONSTRAINTS
OPERATOR acus_op

OPERATOR cnr_link _op
TRIGGERED BY SOME
fire_cmd3_str

OPERATOR command_station_op

OPERATOR gres_op
OPERATOR gui_in
OPERATOR gui_out
OPERATOR jstars_op
TRIGGERED IF
gui_in_str /=my unit pause
PERIOD 8000 MS
OPERATOR rivet_joint op
OPERATOR scdl_link
TRIGGERED BY SOME
target arrayl str
OPERATOR shooter_op
TRIGGERED BY SOME
fire cmd4_str
OPERATOR target_emitter
OPERATOR tibs_op

OPERATOR trackwolf_op

EDGE tibsl_str OPERATOR uav_op
rivet_joint_op -> END
tibs_op
OPERATOR cgs_op
EDGE tibs2_str SPECIFICATION
tibs_op -> INPUT
command_station_op gres_str : UNDEFINED _TYPE NAME,
uav_str : UNDEFINED_TYPE_NAME
EDGE trwolfl_str OUTPUT
trackwolf_op -> gres_lan str : UNDEFINED_TYPE_NAME
acus_op MAXIMUM EXECUTION TIME 50 MS
END
EDGE trwolf2_str
acus_op ~> OPERATOR choose_inputs
command_station_op SPECIFICATION
OUTPUT
EDGE uav_str gui_in_str: my unit
uav_op -> MAXIMUM EXECUTION TIME 200 MS
command_station_op END
DATA STREAM IMPLEMENTATION ADA choose_inputs
Target_amrayl_str : UNDEFINED_TYPE _NAME,
emission_str : UNDEFINED_TYPE_NAME, END
fire_cmd3_str : target_data,
fire_cmd4_str : target_data, OPERATOR cmds_out
gres_str : UNDEFINED_TYPE_NAME, SPECIFICATION
gui_out_str : target _data, INPUT
target array2_str: jstars array, gui_out_str : target data
tibsl_str : UNDEFINED_TYPE_NAME, END
tibs2_str : UNDEFINED_TYPE_NAME, IMPLEMENTATION ADA cmds_out
trwolfl_str : UNDEFINED_TYPE_NAME,
trwolf2_str : UNDEFINED TYPE_NAME, END

uav_str : UNDEFINED_TYPE NAME

146

OPERATOR cnr_link op
SPECIFICATION
INPUT
fire_cmd3_str : target data
OUTPUT
fire_cmd4_str : target data
MAXIMUM EXECUTION TIME 50 MS
END
IMPLEMENTATION ADA cnr_link op

END

OPERATOR command station_op
SPECIFICATION
INPUT
gres_str : UNDEFINED_TYPE_NAME,
gui_in str:my_unit,
target_array2_str: jstars_array,
tibs2_str : UNDEFINED_TYPE_NAME,
trwolf2_str : UNDEFINED_TYPE_NAME,
uav_str : UNDEFINED_TYPE _NAME
OUTPUT
fire_cmd3_str : target data
END
IMPLEMENTATION
GRAPH
VERTEX asas_op : 200 MS

VERTEX cgs_op : 50 MS

VERTEX ctoc_op : 50 MS

VERTEX ctth_op : 50 MS

VERTEX grnd_stat_mod_op : 50 MS
VERTEX lanl_link op: 50 MS
VERTEX lan2_link op : 50 MS

EDGE asas_outl_str
asas_op ->
ctth_op

EDGE fire_cmd1_str
asas_op ->
lan2_link_op

EDGE fire_cmd2_str
lan2_link op ->
ctoc_op

EDGE fire_cmd3_str
ctoc_op ->
EXTERNAL

EDGE gres_lan2_str
lanl_link op ->
asas_op

EDGE gres_lan str -

cgs_op ->
lanl_link_op

EDGE gres_str
EXTERNAL ->
cgs_op

147

EDGE gui_in str
EXTERNAL ->
asas_ op -

EDGE target _array2_str
EXTERNAL ->
grnd_stat mod _op

EDGE target array3_str
gd_stat mod_op ->
lanl_link op

EDGE target_array4 str
lanl_link op ->
asas_op

EDGE tibs2_str
EXTERNAL ->
ctth_op

EDGE tibs3_str
ctth_op ->
lanl_link_op

EDGE tibs4_str
lan1_link op ->
asas_op

EDGE trwolf2_str
EXTERNAL ->
ctth_op

EDGE uav_str
EXTERNAL ->

cgs_op
DATA STREAM
asas_outl_str : UNDEFINED_TYPE NAME,
fire_cmdl_str: target data,
fire_cmd?_str : target_data,
gres_lan2_str : UNDEFINED_TYPE _NAME,
gres_lan_str : UNDEFINED_TYPE_NAME,
target array3_str: grnd_stat mod_array,
target array4 str:gmd stat mod_array,
tibs3_str : UNDEFINED _TYPE_NAME,
tibs4_str : UNDEFINED_TYPE_NAME
CONTROL CONSTRAINTS
OPERATOR asas_op
TRIGGERED IF
gui_in_str /=my_unit.pause
PERIOD 4000 MS

OPERATOR cgs_op

OPERATOR ctoc_
TRIGGERED BY SOME
fire_cmd2_str

OPERATOR ctth_op

OPERATOR grnd_stat mod_op
TRIGGERED BY SOME
target array2 str
MAXIMUM RESPONSE TIME 5050 MS

OPERATOR lanl_link_op
TRIGGERED BY SOME
target array3_str

OPERATOR lan2_link_op
TRIGGERED BY SOME
fire_cmdl_str
END

OPERATOR ctoc_op
SPECIFICATION
INPUT .
fire cmd2_str: target data
OUTPUT
fire_cmd3_str : target_data
MAXIMUM EXECUTION TIME 50 MS
END
IMPLEMENTATION ADA ctoc_op

END

OPERATOR ctth_op
SPECIFICATION
INPUT
asas_outl_str : UNDEFINED_TYPE_NAME,
tibs2_str : UNDEFINED_TYPE_NAME,
trwolf2_str : UNDEFINED_TYPE_NAME
OUTPUT
tibs3_str : UNDEFINED_TYPE_NAME
MAXIMUM EXECUTION TIME 50 MS
END

OPERATOR grcs_op
SPECIFICATION
INPUT
emission_str : UNDEFINED_TYPE_NAME,
gui_in_str: my_unit
OUTPUT
gres_str : UNDEFINED_TYPE NAME
MAXIMUM EXECUTION TIME 500 MS
END

OPERATOR grnd_stat mod_op
SPECIFICATION
INPUT
target array?2_ str: jstars_array
OUTPUT
target array3 str: gmd_stat mod_array
MAXIMUM EXECUTION TIME 50 MS
END ‘
IMPLEMENTATION ADA grnd_stat mod_op

END

OPERATOR gui_in
SPECIFICATION
OUTPUT
gui_in_str : my_unit
END
IMPLEMENTATION
GRAPH
VERTEX choose_inputs : 200 MS

VERTEX gui_input_event_monitor : 200 MS

EDGE gui_in_str
choose_inputs ->
EXTERNAL

CONTROL CONSTRAINTS

OPERATOR choose_inputs

PERIOD 2000 MS

OPERATOR gui_input_event_monitor
END

OPERATOR gui_input_event_monitor
SPECIFICATION
MAXIMUM EXECUTION TIME 200 MS
END
IMPLEMENTATION ADA gui_input_event_monitor

END

OPERATOR gui_out
SPECIFICATION
INPUT
gui_out str:target data
END
IMPLEMENTATION
GRAPH
VERTEX emds_out

EDGE gui_out_str
EXTERNAL ->
cmds_out

CONTROL CONSTRAINTS

OPERATOR cmds_out

TRIGGERED BY SOME
gui_out_str
END

OPERATOR jstars_op
SPECIFICATION
INPUT
emission_str : UNDEFINED_TYPE_NAME,
gui_in str:my unit
OUTPUT
Target amrayl_str : UNDEFINED_TYPE _NAME
MAXIMUM EXECUTION TIME 500 MS
END
IMPLEMENTATION ADA jstars_op

1

END

OPERATOR lanl_link_op
SPECIFICATION
INPUT
gres_lan_str: UNDEFINED TYPE_NAME,
target array3_str: grnd_stat mod_array,
tibs3_str : UNDEFINED_TYPE_NAME
OUTPUT
gres_lan2_str : UNDEFINED_TYPE _NAME,
target array4 str:gmd_stat mod_array,
tibs4_str : UNDEFINED_TYPE_NAME
MAXIMUM EXECUTION TIME 50 MS
END
IMPLEMENTATION ADA lanl_link_op

END

OPERATOR lan2_link op
SPECIFICATION
INPUT
. — fire_cmd]_str : target data
OUTPUT
fire_omd2_str : target_data
MAXIMUM EXECUTION TIME 50 MS
END
IMPLEMENTATION ADA lan2_link_op

END

148

OPERATOR rivet_joint_op
SPECIFICATION
INPUT
emission_str : UNDEFINED_TYPE_NAME,
gui_in_str : my_unit
OUTPUT
tibs1_str : UNDEFINED_TYPE_NAME
MAXIMUM EXECUTION TIME 500 MS
END

OPERATOR scdl_link_op
SPECIFICATION
INPUT
Target_arrayl_str : UNDEFINED_TYPE_NAME
OUTPUT
target array2_str:jstars_array
MAXIMUM EXECUTION TIME 50 MS
END
IMPLEMENTATION ADA scdl_link _op

END

OPERATOR shooter_op
SPECIFICATION
INPUT
fire_cmd4_str : target data
OUTPUT
gui_out_str : target_data
MAXIMUM EXECUTION TIME 50 MS
END
IMPLEMENTATION ADA shooter_op

END

OPERATOR target_emitter
SPECIFICATION
INPUT
gui_in_str : my_unit
OUTPUT
emission_str : UNDEFINED_TYPE_NAME
MAXIMUM EXECUTION TIME 500 MS
END

OPERATOR target_emitter_op
SPECIFICATION
MAXIMUM EXECUTION TIME 500 MS
END
IMPLEMENTATION ADA target emitter_op

END

OPERATOR tibs_op
SPECIFICATION
INPUT
tibsl_str : UNDEFINED_TYPE_NAME
OUTPUT)
tibs2_str : UNDEFINED_TYPE_NAME
MAXIMUM EXECUTION TIME 50 MS
END

OPERATOR trackwolf _op
SPECIFICATION
INPUT
emission_str : UNDEFINED_TYPE_NAME,
gui_in_str : my_unit
OUTPUT
trwolfl_str : UNDEFINED_TYPE_NAME

149

MAXIMUM EXECUTION TIME 500 MS
END

OPERATOR uav_
SPECIFICATION
INPUT
gui_in_str: my_unit
OUTPUT
uav_str : UNDEFINED_TYPE_NAME
MAXIMUM EXECUTION TIME 500 MS
END

150

APPENDIX D. CAPS MINI-TUTORIALS

151

152

procedures, and concepts. These will serve as a basis for beginning the CAPS
documentation process. An index of subjects is provided. All examples are based on the
prototype. Reference the graphs and PSDL files in Appendix B to see where these
operations take place.

S e

The following are a series of mini-tutorials which describe various CAPS actions,

Changing or Adding a Type in a Working Prototype

Creating Functionality

Removing a Bubble from a Working Prototype.

Decomposing a Working Bubble :
Adding a Quit Button :
Making a new version of a prototype 5

Changing or Adding a Type in a Working Prototype

This example is changing from a system defined type (like Integer) to a user

defined type (like Target_data). We changed the tgt num_steam in TACMS] from an
integer to a user defined type which we created and tested

In the PSDL editor do this:

1. Tell CAPS you'll be using a user-defined type. Invoke the PSDL editor,
g0 to the blank line at the top, and click an empty space. Note the entry
"psdl_components" appear at bottom, click it. Note the entry "type"
appear at bottom, click it, see the TYPE structure at the top. Type in the
word "target_data" (or the name of your new type) at the top, press Enter.
Three lines below, click on <type implementation>, then at the bottom
click on "Ada implementation”. Click off to the right of "Ada
Implementation" to propagate the change. The task is done unless you
need extra fancy stuff like adding the declaration of a constant for defining
an initial state for state machines.

2. Now, change a stream to the new type (similar steps for first time
declaration): Go to the DATA STREAMS declaration in the root node
section in the PSDL, find the stream in question, and click on the old type -
it will now be underlined. Edit/cut structure, then either

<decl_type name> or <identifier> appears in its place.

a. Ifyou cut a valid type, <decl_type name> appears in its place.
At bottom, click on "user_defined" and <decl_type name> above changes
to <identifier>. Above now type in the word "target data" (or your type
name) and hit Return. Now click anywhere in the open space of the
window to the right to propagate the change.

153

b. If, however, you cut UNDEFINED TYPE NAME, then
<identifier> appears in its place. Just type in the new type name and press
return.

check your work...
save and exit
done with PSDL changes

3. If you are using a user defined type, you'll have to create a file which
defines the type. So, create a file called "<prototype>.<type name>.a". This
file will contain your record or abstract data type. It will contain a package
called "<type_name> PKG". Inside the package, you will create the type
starting with a statement like "type <type name> is record" ... "end record". If
your type has any operations, their implementations also go in this package.

2. Creating Functionality

This section shows you how to make the stub files for your CAPS projects. Note
the EXACT NAMING CONVENTIONS. Fill in the names for your prototype, operator,
stream, parameter mode and stream_type below. The filename must also be correct, Ada
is not case sensitive but UNIX is! Name the file: <prototype>.<operator name>.a i.e.
"weather.temperature.a". What follows is a skeleton ada file.

-- Be sure to "with" any needed packages, SPECIFICALLY any user defined

types!!!
with my_user_defined_type PKG; -- an example of a user defined type
with text_io; -- only use as needed

package <operator_name> PKG is
procedure <operator_name> (<stream_name> : in or out <stream_type>),
end <operator_name> PKG;

package body <operator_name> PKG is
procedure <operator_name> (<stream_name> : in or out <stream_type>) is
begin
null; -- YOU put functionality here
end <operator name>;
end <operator_name> PKG;

154

3. Removing a Bubble from a Working Prototype.

Start in the graphics editor. Select the bubble you want to kill then press delete.
Now return to the SDE and look for remnants of the old operator. Expect to see error
messages about multiple roots. Find the old bubble and click on the adjacent word
OPERATOR and all associated parts will be underlined. Select Edit/Cut_structure and
the underlined parts will be gone. Click in the open area to the right in the main window
to propagate the change.

If the bubble was a child, inspect the PSDL of its parent to ensure all trash is gone.
It should be. Also look for references to Operator NONAME _##. This is a sure sign that
you've confused the SDE.

Save and exit. Next, edit the interface. Remove components that were tied to the
bubble you deleted. Also, check the ADA code for any components tied to the bubble
deleted because their interfaces may have changed due to deleted streams. Regenerate
code per normal steps.

4. Decomposing a Working Bubble

If you have a working prototype and you want to decompose one of the bubbles,
here is a checklist of all the things you must do. Note: click is a single press and release of
the left mouse button. Click and drag is a single press without lettmg g0 until you've
moved to where you want to go.

- Open the PSDL editor for your prototype.

- Select edit-graph.

- Place your mouse pointer on the rim of the bubble you want to decompose then
click.

- Select graph/decompose.

- You'll get a new window. Note the streams from your previous window are now
at the bottom. You must assign each of these to your new children bubbles.
Those labeled "INPUT" must start outside a bubble and end in one. Those
labeled "OUTPUT" are just the opposite.

- Create operators per normal rules.

- For an external to input stream, select (click) the stream icon, move your cursor
to a point outside a bubble, click, then move your cursor to a point inside a ,
bubble, click again. Label the new stream per normal rules but use the name of
the stream from the bottom of the screen.

- For an input stream to external, select (click) the stream icon, move your cursor
to a point inside a bubble, click, then move your cursor to a point outside a
bubble, DOUBLE click. Label the new stream per normal rules but use the
name of the stream from the bottom of the screen.

155

Connect the above bubbles per normal rules. Don't forget to give
names to these connecting streams. Give your new child bubbles names
and MET's (if needed). Of course, if you're prototyping a real system, give
real names. When done, select graph/save_and_continue then
graph/edit_parent. The screen will return to your prototype screen. The
bubble you decomposed will now have a double circle. Nothing to do
here so just select graph/return_to_SDE. INSPECT YOUR PSDL
specifically look for the string "NONAME _##" where ## is some integer.
This means you forgot to label something so CAPS did it for you. Go back
to editing the graph, select the offender, and change its name from
NONAME_## to whatever you intended. If you don't want it, select it
then press delete. When you again return to PSDL, the problem should be
fixed.

NOW, begin editing your PSDL as follows:

Go to your parent bubble in the PSDL. Note that it is much bigger and
contains information about it's children and the streams that connect them.
First, assign a type to the internal, connecting streams. Click on
"<decl_type name>". At the bottom, click on the appropriate type, press
return, then click to the right of the newly entered information to propagate
the change.

While still working in the area of the parent, assign control constraints
to the children as needed. Use normal rules. DON'T FORGET to trigger
operators as needed. Now move to one.of the new children in the PSDL.

All types should be filled in since you just did that in the parent area and
the changes should have propagated. But, note that the last line that reads
<operator implementation>. Click on that. Note the two choices that
appear at the bottom. Click on "ADA_Implementation.” In the PSDL,
"<operator implementation>" changes to "IMPLEMENTATION ADA
<operator name>". " [As a general rule, children bubbles have an "ADA _
Implementation" which means that you will write an Ada package for them
using the following naming convention:"<prototype name>.
<operator_name>.a". This only applies to the children bubbles you create
as a result of decomposing a parent. Don't confuse this with the fact that
your overall prototype is a parent and all bubbles are actually its children.]
INSPECT THE PSDL AGAIN. You should have only one root operator
. and nothing in braces "<>".

Save and exit.

Go to your files for this prototype.

You may already have a ".a" file for the bubble you just decomposed. You
don't need it anymore but you may need to transfer it's functionality to some of it's
children. They all need ".a" files and you must write them from scratch. Section
C of this chapter covers this.

156

Adding a Quit Button

The current CAPS paradigm does not specifically have a quit button.
Instead, the user places his cursor in the active prototype window and
executes a "Control - C". This section addresses how to make your own
quit button. Although it is written in the context of the multiple file
approach, the concepts are transferable to the single file approach.

The quit button will, of course, trigger a mouse event which will be
detected and acted on by a TAE Event Handler.

Edit the interface as follows. Modify the input panel and select
New Item. Create an item with a name that reflects the operation such as
“quit_op.” The title is “Quit”, the presentation category is “Selection”,
and the Presentation Type is “Push Button” [other options like “Radio
Button” will also work]. Click OK when done. Then File/Save.

You are now going to generate code. Refer to instructions elsewhere
on how to use the Multi-file Approach.

In pan_mult_in_b.a, under the event handler of quit_op Event, just
add the call "global b.Set_Application Done". This procedure sets a
global "done" variable from false to true. The code fragment could look
like this:

if (tae_misc.s_equal(value(1), "Quit"))
Text_IO.put_line("In atacms.pan_gui_in_b.a, user selectedQuit™);
global.Set_Application_Done; -- sets "done" flag to true

Three other packages will periodically test this "done" variable to
see if it has changed from false to true.

This is programmed already in the body of file
<prototype>.generated_tae_input_event monitor.a. The call here will
shut down the TAE windows. We, however, must make minor changes to
the dynamic and static schedulers in file <prototype>.a. Both of these
have tasks that run in infinite loops. Make these simple change these to
conditional loops with a function call that checks the "done" variable.

Add these two lines:

with global;

157

while not Global. Application Done loop
Note that this is invisible to CAPS. If you regenerate code on another
version, check to see what parts of the above changes survived.
Making a new version of a prototype
In this example, let’s say you want to create a version 1.2. Change directories
to the prototype you want to revise. Make a new directory (mkdir 1.2). Change

directory to the new version's directory (cd 1.2). Do a recursive copy of
everything that was in the 1.1 directory (cp -rp ../1.1/* .).

158

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Road., Ste 0944
Ft Belvoir, VA 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 Dyer Road

Monterey, CA 93943

Director, Training and Education
MCCDC, Code C46

1019 Elliot Rd

Quantico, Virginia 22134-5027

Dr. Ted Lewis, Chairman, Code CS/L
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943

Dr. Valdis Berzins, Code CS/Vb
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr. Man-Tak Shing, Code CS/Sh
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

MAJ David Dampier
Georgia Tech.

115 O’Keefe Building
Atlanta, GA 30332-0862

LCDR David S. Angrisani
3327 Watson Rd.
St. Louis, MO 63139

MAJ George Whitbeck

107 Coopers Ln
Stafford, VA 22554

159

10.

11.

12.

Arthur G. Angrisani
2275 Golf Isle Dr.
Melbourne, FL 32939

Margaret Gates
2266 Sequoia Dr.
Clearwater, FL 34623

Dr. Lugi, Code CS/Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

160

